Citation: Liu Xiaojun, Qin Lang, Zhan Yuanyuan, Chen Meng, Yu Yanlei. Phototuning of Structural Colors in Cholesteric Liquid Crystals[J]. Acta Chimica Sinica, ;2020, 78(6): 478-489. doi: 10.6023/A20040103 shu

Phototuning of Structural Colors in Cholesteric Liquid Crystals

  • Corresponding author: Yu Yanlei, ylyu@fudan.edu.cn
  • Received Date: 9 April 2020
    Available Online: 9 May 2020

    Fund Project: the National Key R & D Program of China 2017YFA0701302the Innovation Program of Shanghai Municipal Education Commission 2017-01-07-00-07-E00027the National Natural Science Foundation of China 21734003Project supported by the National Natural Science Foundation of China (Nos. 51903053, 21734003, 51721002), the National Key R & D Program of China (No. 2017YFA0701302), the Innovation Program of Shanghai Municipal Education Commission (No. 2017-01-07-00-07-E00027), and the China Postdoctoral Science Foundation (Nos. 2019T120300, 2018M641923)the National Natural Science Foundation of China 51903053the China Postdoctoral Science Foundation 2019T120300the China Postdoctoral Science Foundation 2018M641923the National Natural Science Foundation of China 51721002

Figures(11)

  • Cholesteric liquid crystals (CLCs) are a kind of intriguing soft photonic crystal materials, in which the orientation of LC molecules varies in a helical fashion, and selectively reflect light, known as structural color, according to Bragg's law. Moreover, the structural color determined by the pitch length of the helices in CLCs can be tuned owing to the dynamic control of inherent self-organized helical superstructures in response to external stimuli. Currently, light-driven CLCs have attracted extensive interest because light, compared to other stimuli, has unique advantages of remote, temporal, local and spatial manipulation. Such elegant systems are generally formulated by doping light-driven chiral switches, mainly consisting of chiral centers and photoswitches, into a nematic LC host. The chiral centers are able to twist the nematic LC host into helical superstructures, which is represented by helical twisting power (HTP). The photoswitches undergo configurational changes upon photoisomerization, leading to the variation in HTP and the pitch length of the helices, and consequently tune the structural color of the CLCs. These light-driven CLCs provide opportunities for various photonic applications such as tunable filters, sensors, tunable optical lasers, and optically addressed displays. In this review, we summarize diverse light-driven CLC systems according to the type of the photoswitch in doped chiral switches. Azobenzene-and motor-based chiral switches usually have high HTP and large variation in HTP, which enables the tuning range of the resultant CLC to cover visible spectrum. Besides, chiral switches based on dithienylethenes have also been synthesized and utilized to tune the reflection of the CLC across red, green and blue colors that remain unchanged in darkness even after one week because of the excellent thermal stability of dithienylethenes. Chiral switches based on dicyanoethene are used to construct an optically tunable reflective-photoluminescent CLC system. Importantly, the design of the light-driven chiral switches is analyzed in detail to reveal the structure-property correlation. Potential and demonstrated practical applications of light-driven CLCs are discussed, and forecast of existing challenges and opportunities in CLC systems are concluded.
  • 加载中
    1. [1]

      Vukusic, P.; Sambles, J. R. Nature 2003, 424, 852.  doi: 10.1038/nature01941

    2. [2]

      Graham-Rowe, D. Nat. Photon. 2009, 3, 551.  doi: 10.1038/nphoton.2009.172

    3. [3]

      Dumanli, A. G.; Savin, T. Chem. Soc. Rev. 2016, 45, 6698.  doi: 10.1039/C6CS00129G

    4. [4]

      Pris, A. D.; Utturkar, Y.; Surman, C.; Morris, M. G.; Vert, A.; Zalyubovskiy, S.; Deng, T.; Ghiradella, H. T.; Potyrailo, R. A. Nat. Photon. 2012, 6, 195.  doi: 10.1038/nphoton.2011.355

    5. [5]

      Zhang, F.; Shen, Q.; Shi, X.; Li, S.; Wang, W.; Luo, Z.; He, G.; Zhang, P.; Tao, P.; Song, C.; Zhang, W.; Zhang, D.; Deng, T.; Shang, W. Adv. Mater. 2015, 27, 1077.  doi: 10.1002/adma.201404534

    6. [6]

      Lee, G. H.; Choi, T. M.; Kim, B.; Han, S. H.; Lee, J. M.; Kim, S. ACS Nano 2017, 11, 11350.  doi: 10.1021/acsnano.7b05885

    7. [7]

      Chou, H.; Nguyen, A.; Chortos, A.; To, J. W. F.; Lu, C.; Kurosawa, T.; Bae, W.; Tok, J. B. H.; Bao, Z. A. Nat. Commun. 2015, 6, 1.

    8. [8]

      Lv, J.; Ding, D.; Yang, X.; Ke, H.; Miao, X.; Wang, D.; Kou, B.; Huang, L.; Tang, Z. Angew. Chem., Int. Ed. 2019, 58, 7783.  doi: 10.1002/anie.201903264

    9. [9]

      Ren, J.; Wang, Y.; Yao, Y.; Wang, Y.; Fei, X.; Qi, P.; Lin, S.; Kaplan, D. L.; Buehler, M. J.; Ling, S. Chem. Rev. 2019, 119, 12279.  doi: 10.1021/acs.chemrev.9b00416

    10. [10]

      Vignolini, S.; Rudall, P. J.; Rowland, A. V.; Reed, A.; Moyroud, E.; Faden, R. B.; Baumberg, J. J.; Glover, B. J.; Steiner, U. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 15712.  doi: 10.1073/pnas.1210105109

    11. [11]

      Teyssier, J.; Saenko, S. V.; Van Der Marel, D.; Milinkovitch, M. C. Nat. Commun. 2015, 6, 1.

    12. [12]

      Yablonovitch, E. Phys. Rev. Lett. 1987, 58, 2059  doi: 10.1103/PhysRevLett.58.2059

    13. [13]

      John, S. Phys. Rev. Lett. 1987, 58, 2486.  doi: 10.1103/PhysRevLett.58.2486

    14. [14]

      Ye, C.; Chen, S.; Li, F.; Ge, J.; Yong, P.; Qin, M.; Song, Y. Acta Chim. Sinica 2018, 76, 237 (in Chinese).
       

    15. [15]

      Wan, L.; Zhang, M.; Wang, J.; Jiang, L. Acta Chim. Sinica 2016, 74, 639 (in Chinese).
       

    16. [16]

      Zeng, M.; King, D.; Huang, D.; Do, C.; Wang, L.; Chen, M.; Lei, S.; Lin, P.; Chen, Y.; Cheng, Z. Proc. Natl. Acad. Sci. U. S. A. 2019, 116, 18322.  doi: 10.1073/pnas.1906511116

    17. [17]

      Wang, Y.; Aurelio, D.; Li, W.; Tseng, P.; Zheng, Z.; Li, M.; Kaplan, D. L.; Liscidini, M.; Omenetto, F. G. Adv. Mater. 2017, 29, 1702769.  doi: 10.1002/adma.201702769

    18. [18]

      Tokunaga, S.; Itoh, Y.; Yaguchi, Y.; Tanaka, H.; Araoka, F.; Takezoe, H.; Aida, T. Adv. Mater. 2016, 28, 4077.  doi: 10.1002/adma.201600258

    19. [19]

      Lee, S. Y.; Choi, J.; Jeong, J.; Shin, J. H.; Kim, S. Adv. Mater. 2017, 29, 1605450.  doi: 10.1002/adma.201605450

    20. [20]

      Stumpel, J. E.; Gil, E. R.; Spoelstra, A. B.; Bastiaansen, C. W. M.; Broer, D. J.; Schenning, A. P. H. J. Adv. Funct. Mater. 2015, 25, 3314.  doi: 10.1002/adfm.201500745

    21. [21]

      Szendrei, K.; Granter, P.; Sànchez-Sobrado, O.; Eger, R.; Kuhn, A.; Lotsch, B. V. Adv. Mater. 2015, 27, 6341.  doi: 10.1002/adma.201503463

    22. [22]

      Shang, L.; Zhang, W.; Xu, K.; Zhao, Y. Mater. Horiz. 2019, 6, 945.  doi: 10.1039/C9MH00101H

    23. [23]

      Ge, J.; Yin, Y. Angew. Chem., Int. Ed. 2011, 50, 1492.  doi: 10.1002/anie.200907091

    24. [24]

      Yu, H.-T.; Tang, J.-W.; Feng, Y.-Y.; Feng, W. Chin. J. Polym. Sci. 2019, 37, 1183.  doi: 10.1007/s10118-019-2331-z

    25. [25]

      Chen, J.; Leung, F. K.; Stuart, M. C. A.; Kajitani, T.; Fukushima, T.; Van Der Giessen, E.; Feringa. B. L. Nat. Chem. 2017, 10, 132.
       

    26. [26]

      Wang, L.; Urbas, A. M.; Li, Q. Adv. Mater. 2018, 27, 1801335.
       

    27. [27]

      Xiang, J.; Li, Y.; Li, Q. Adv. Mater. 2015, 27, 3014.  doi: 10.1002/adma.201500340

    28. [28]

      Wang, L.; Li, Q. Chem. Soc. Rev. 2018, 47, 1044.  doi: 10.1039/C7CS00630F

    29. [29]

      Wu, P.; Wang, J.; Jiang, L. Mater. Horiz. 2020, 7, 338.  doi: 10.1039/C9MH01389J

    30. [30]

      Hu, W.; Chen, M.; Wang, Q.; Zhang, L.; Yuan, X.; Chen, F.; Yang, H. Angew. Chem., Int. Ed. 2019, 58, 6698.  doi: 10.1002/anie.201902681

    31. [31]

      Broer, D. J.; Mol, G. N.; Lub, J. Nature 1995, 378, 467.  doi: 10.1038/378467a0

    32. [32]

      Mitov, M. Adv. Mater. 2012, 24, 6260.  doi: 10.1002/adma.201202913

    33. [33]

      Bisoyi, H. K.; Li, Q. Angew. Chem., Int. Ed. 2016, 55, 2994.  doi: 10.1002/anie.201505520

    34. [34]

      Zola, R. S.; Bisoyi, H. K.; Wang, H.; Urbas, A. M.; Bunning, T. J.; Li, Q. Adv. Mater. 2018, 31, 1806172.

    35. [35]

      Bisoyi, H. K.; Bunning, T. J.; Li, Q. Adv. Mater. 2018, 30, 1706512.  doi: 10.1002/adma.201706512

    36. [36]

      Wang, L.; Li, Q. Adv. Funct. Mater. 2016, 26, 10.  doi: 10.1002/adfm.201502071

    37. [37]

      Bisoyi, H. K.; Li, Q. Chem. Rev. 2016, 116, 15089.  doi: 10.1021/acs.chemrev.6b00415

    38. [38]

      Bisoyi, H. K.; Li, Q. Acc. Chem. Res. 2014, 47, 3184.  doi: 10.1021/ar500249k

    39. [39]

      White, T. J.; Mcconney, N. E.; Bunning, T. J. J. Mater. Chem. 2010, 20, 9832.  doi: 10.1039/c0jm00843e

    40. [40]

      McConney, M. E.; Rumi, M.; Godman, N. P.; Tohgha, U. N.; Bunning, T. J. Adv. Opt. Mater. 2019, 7, 1900429.  doi: 10.1002/adom.201900429

    41. [41]

      Che, K.-J.; Yang, Y.-J.; Lin, Y.-L.; Shan, Y.-W.; Ge, Y.-H.; Li, S.-S.; Chen, L.-J.; Yang, C. J. Lab. Chip. 2019, 19, 3116.  doi: 10.1039/C9LC00655A

    42. [42]

      Chen, P.; Ma, L.-L.; Hu, W.; Shen, Z.-X.; Bisoyi, H. K.; Wu, S.-B.; Ge, S.-J.; Li, Q.; Lu, Y.-Q. Nat. Commun. 2019, 10, 2518.  doi: 10.1038/s41467-019-10538-w

    43. [43]

      Furumi, S.; Tamaoki, N. Adv. Mater. 2010, 22, 886.  doi: 10.1002/adma.200902552

    44. [44]

      Chen, P.; Wei, B.-Y.; Hu, W.; Lu, Y.-Q. Adv. Mater. 2019, 1903665.

    45. [45]

      Zheng, Z.; Li, Y.; Bisoyi, H. K.; Wang, L.; Bunning, T. J.; Li, Q. Nature 2016, 531, 352.  doi: 10.1038/nature17141

    46. [46]

      Zola, R. S.; Bisoyi, H. K.; Wang, H.; Urbas, A. M.; Bunning, T. J.; Li, Q. Adv. Mater. 2019, 31, 1806172.  doi: 10.1002/adma.201806172

    47. [47]

      Wang, Y.; Li, Q. Adv. Mater. 2012, 24, 1926.  doi: 10.1002/adma.201200241

    48. [48]

      Sackmann, E. J. Am. Chem. Soc. 1971, 93, 7088.  doi: 10.1021/ja00754a068

    49. [49]

      Ruslim, C.; Ichimura, K. J. Phys. Chem. B 2000, 104, 6529.  doi: 10.1021/jp000338f

    50. [50]

      Kurihara, S.; Nomiyama, S.; Nonaka, T. Chem. Mater. 2001, 13, 1992.  doi: 10.1021/cm0007555

    51. [51]

      Yoshioka, T.; Ogata, T.; Nonaka, T.; Moritsugu, M.; Kim, S.-N.; Kurihara, S. Adv. Mater. 2005, 17, 1226.  doi: 10.1002/adma.200401429

    52. [52]

      Li, Q.; Green, L.; Venkataraman, N.; Shiyanovskaya, I.; Khan, A.; Urbas, A.; Doane, J. W. J. Am. Chem. Soc. 2007, 129, 12908.  doi: 10.1021/ja0747573

    53. [53]

      White, T. J.; Bricker, R. L.; Natarajan, L. V.; Tabiryan, N. V.; Green, L.; Li, Q. Adv. Funct. Mater. 2009, 19, 3484.  doi: 10.1002/adfm.200900396

    54. [54]

      Ma, J.; Li, Y.; White, T. J.; Urbas, A.; Li, Q. Chem. Commun. 2010, 46, 3463.  doi: 10.1039/c002436h

    55. [55]

      Li, Q.; Li, Y.; Yang, D.; White, T. J.; Bunning, T. J. Adv. Mater. 2011, 23, 5069.  doi: 10.1002/adma.201103362

    56. [56]

      Chen, L.; Li, Y.; Fan, J.; Bisoyi, H. K.; Weitz, D. A.; Li, Q. Adv. Opt. Mater. 2014, 2, 845.  doi: 10.1002/adom.201400166

    57. [57]

      Green, L.; Li, Y.; White, T. J.; Urbas, A.; Bunning, T.; Li, Q. Org. Biomol. Chem. 2009, 7, 3930.  doi: 10.1039/b910583b

    58. [58]

      Wang, H.; Bisoyi, H. K.; Wang, L.; Urbas, A. M.; Bunning, T. J.; Li, Q. Angew. Chem., Int. Ed. 2018, 57, 1627.  doi: 10.1002/anie.201712781

    59. [59]

      Kim, Y.; Tamaoki, N. J. Mater. Chem. C 2014, 2, 9258.  doi: 10.1039/C4TC01851F

    60. [60]

      Mathews, M.; Tamaoki, N. J. Am. Chem. Soc. 2008, 130, 11409.  doi: 10.1021/ja802472t

    61. [61]

      Wang, Y.; Urbas, A.; Li, Q. J. Am. Chem. Soc. 2012, 134, 3342.  doi: 10.1021/ja211837f

    62. [62]

      Qin, L.; Gu, W.; Chen, Y.; Wei, J.; Yu, Y. RSC Adv. 2018, 8, 38935.  doi: 10.1039/C8RA07657J

    63. [63]

      Wang, H.; Bisoyi, H. K.; Urbas, A. M.; Bunning, T. J.; Li, Q. J. Am. Chem. Soc. 2019, 141, 8078.

    64. [64]

      Qin, L.; Gu, W.; Wei, J.; Yu, Y. Adv. Mater. 2018, 30, 1704941.  doi: 10.1002/adma.201704941

    65. [65]

      Qin, L.; Wei, J.; Yu, Y. Adv. Optical Mater. 2019, 7, 1900430.  doi: 10.1002/adom.201900430

    66. [66]

      Wang, L.; Dong, H.; Li, Y.; Xue, C.; Sun, L.; Yan, C.; Li, Q. J. Am. Chem. Soc. 2014, 136, 4480.  doi: 10.1021/ja500933h

    67. [67]

      Denekamp, C.; Feringa, B. L. Adv. Mater. 1998, 10, 1080.  doi: 10.1002/(SICI)1521-4095(199810)10:14<1080::AID-ADMA1080>3.0.CO;2-T

    68. [68]

      Leeuwen, T.; Pijper, T. C.; Areephong, J.; Feringa, B. L.; Browne, W. R.; Katsonis, N. J. Mater. Chem. 2011, 21, 3142.  doi: 10.1039/c0jm03626a

    69. [69]

      Yamaguchi, T.; Inagawa, T.; Nakazumi, H.; Irie, R.; Irie, M. Chem. Mater. 2000, 12, 869.  doi: 10.1021/cm9907559

    70. [70]

      Yamaguchi, T.; Inagawa, T.; Nakazumi, H.; Irie, R.; Irie, M. J. Mater. Chem. 2001, 11, 2453.  doi: 10.1039/b103925n

    71. [71]

      Li, Y.; Urbas, A.; Li, Q. J. Am. Chem. Soc. 2012, 134, 9573.  doi: 10.1021/ja302772z

    72. [72]

      Fan, J.; Li, Y.; Bisoyi, H. K.; Zola, R. S.; Yang, D.; Bunning, T.; Weitz, D. A.; Li, Q. Angew. Chem., Int. Ed. 2015, 54, 2160.  doi: 10.1002/anie.201410788

    73. [73]

      Li, Y.; Xue, C.; Wang, M.; Urbas, A.; Li, Q. Angew. Chem., Int. Ed. 2013, 52, 13703.  doi: 10.1002/anie.201306396

    74. [74]

      Van Delden, R. A.; Koumura, N.; Harada, N.; Feringa, B. L. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 4945.  doi: 10.1073/pnas.062660699

    75. [75]

      Eelkema, R.; Pollard, M. M.; Vicario, J.; Katsonis, N.; Ramon, B. S.; Bastiaansen, C. W. M.; Broer, D. J. J. Am. Chem. Soc. 2006, 128, 14397.  doi: 10.1021/ja065334o

    76. [76]

      Feringa, B. L.; Huck, N. P. M.; Van Doren, H. A. J. Am. Chem. Soc. 1995, 117, 9929.  doi: 10.1021/ja00144a027

    77. [77]

      Van Delden, R. A.; Van Gelder, M. B.; Huck, N. P. M.; Feringa, B. L. Adv. Funct. Mater. 2003, 13, 319.  doi: 10.1002/adfm.200304313

    78. [78]

      White, T. J.; Cazzell, S. A.; Freer, A. S.; Yang, D.; Sukhomlinova, L.; Su, L.; Kosa, T.; Taheri, B.; Bunning, T. J. Adv. Mater. 2011, 23, 1389.  doi: 10.1002/adma.201003577

    79. [79]

      Wang, Y.; Shi, J.; Chen, J.; Zhu, W.; Baranoff, E. J. Mater. Chem. C 2015, 3, 7993.  doi: 10.1039/C5TC01565K

    80. [80]

      Mei, J.; Hong, Y.; Lam, J. W. Y.; Qin, A.; Tang, Y.; Tang, B. Z. Adv. Mater. 2014, 26, 5429.  doi: 10.1002/adma.201401356

    81. [81]

      Zhao, D.; Fan, F.; Cheng, J.; Zhang, Y.; Wong, K. S.; Chigrinov, V. G.; Kwok, H. S.; Guo, L.; Tang, B. Z. Adv. Opt. Mater. 2015, 3, 199.  doi: 10.1002/adom.201400428

    82. [82]

      Li, J.; Zhang, Z.; Tian, J.; Li, G.; Wei, J.; Guo, J. Adv. Opt. Mater. 2017, 5, 1700014.  doi: 10.1002/adom.201700014

    83. [83]

      Li, J.; Bisoyi, H. K.; Tian, J.; Guo, J.; Li, Q. Adv. Mater. 2019, 31, 1807751.  doi: 10.1002/adma.201807751

    84. [84]

      Li, J.; Bisoyi, H. K.; Lin, S.; Guo, J.; Li, Q. Angew. Chem., Int. Ed. 2019, 58, 16052.  doi: 10.1002/anie.201908832

    85. [85]

      Yang, J.; Liu, J.; Guan, B.; He, W.; Yang, Z.; Wang, J.; Ikeda, T.; Jiang, L. J. Mater. Chem. C 2019, 7, 9460.  doi: 10.1039/C9TC02938A

  • 加载中
    1. [1]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    2. [2]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    3. [3]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    4. [4]

      Wenliang Wang Weina Wang Sufan Wang Tian Sheng Tao Zhou Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084

    5. [5]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    6. [6]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    7. [7]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    8. [8]

      Haiying Wang Andrew C.-H. Sue . How to Visually Identify Homochiral Crystals. University Chemistry, 2024, 39(3): 78-85. doi: 10.3866/PKU.DXHX202309004

    9. [9]

      Keying Qu Jie Li Ziqiu Lai Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091

    10. [10]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

    11. [11]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    12. [12]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    13. [13]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    14. [14]

      Dongju Zhang . Exploring the Descriptions and Connotations of Basic Concepts of Teaching Crystal Structures. University Chemistry, 2024, 39(3): 18-22. doi: 10.3866/PKU.DXHX202304003

    15. [15]

      Weina Wang Fengyi Liu Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029

    16. [16]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    17. [17]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    18. [18]

      Hongwei Ma Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035

    19. [19]

      Yanxin Wang Hongjuan Wang Yuren Shi Yunxia Yang . Application of Python for Visualizing in Structural Chemistry Teaching. University Chemistry, 2024, 39(3): 108-117. doi: 10.3866/PKU.DXHX202306005

    20. [20]

      Guoxian Zhu Jing Chen Rongkai Pan . Enhancing the Teaching Quality of Atomic Structure: Insights and Strategies. University Chemistry, 2024, 39(3): 376-383. doi: 10.3866/PKU.DXHX202305027

Metrics
  • PDF Downloads(209)
  • Abstract views(4106)
  • HTML views(1556)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return