Citation: Zhang Lei, Ma Haiyan. Ethylene-Bridged Multi-Substituted Indenyl-Fluorenyl Zirconocene and Hafnocene Complexes: Synthesis, Structure and Catalytic Behavior for Propylene Selective Oligomerization[J]. Acta Chimica Sinica, ;2020, 78(8): 778-787. doi: 10.6023/A20030092 shu

Ethylene-Bridged Multi-Substituted Indenyl-Fluorenyl Zirconocene and Hafnocene Complexes: Synthesis, Structure and Catalytic Behavior for Propylene Selective Oligomerization

  • Corresponding author: Ma Haiyan, haiyanma@ecust.edu.cn
  • Received Date: 27 March 2020
    Available Online: 16 June 2020

    Fund Project: the National Natural Science Foundation of China 21274041Project supported by the National Natural Science Foundation of China (No. 21274041)

Figures(8)

  • In metallocene-mediated propylene polymerization, β-methyl elimination (β-Me elimination) is considered as the key chain-release step for obtaining allyl-terminated products, which are highly preferred as macro(co)monomers or building blocks for preparing novel polymers. However, for most metallocene catalysts the transfer of a β-methyl is instinctively less favored due to its steric and electronic disadvantages. Up to date, very few cases have been found to be efficient for triggering selective β-methyl elimination. In this work, a series of novel ansa-metallocene complexes, ansa-C2H4-{2-Me-3-Bn- 5, 6-[1, 3-(CH2)3]Ind}(Flu)ZrCl2 (C1), ansa-C2H4-{2-Me-3-Bn-5, 6-[1, 3-(CH2)3]Ind}(2, 7-tBu2-Flu)ZrCl2 (C2), ansa-C2H4-{2-Me-3-Bn-5, 6-[1, 3-(CH2)3]Ind}(3, 6-tBu2-Flu)ZrCl2 (C3) and ansa-C2H4-{2-Me-3-Bn-5, 6-[1, 3-(CH2)3]Ind}(Flu)HfCl2 (C4), were synthesized via the reaction of the dilithium salts of the corresponding proligand with 1 equiv. of ZrCl4 or HfCl4 in Et2O. All complexes were characterized by 1H NMR, 13C NMR and elemental analysis. The molecular structures of complexes C1, C2, and C3 were further determined via X-ray diffraction method. In the solid state, these complexes adopted an indenyl-backward orientation with rotation angles (RA: the orientation of the indenyl ring with respect to the fluorenyl ring) ranging from -11.30° to -17.07°. Upon activation with modified methylaluminoxane (MMAO) or AliBu3/ [Ph3C][B(C6F5)4] (TIBA/TrB), all these complexes exhibited moderate to high activities for propylene oligomerization at 40~100 ℃, affording propylene oligomers with both allyl and vinylidene chain-ends, which arised from β-Me elimination and β-H eliminations respectively. The methyl group at the 2-position of the indenyl ring turned out to have negative effects on both catalytic activity and β-Me elimination selectivity. Zirconocene complex C1 polymerized propylene to give oligomers with 40%~52% allyl chain-ends. However, further modification of the fluorenyl moiety allowed a great improvement in β-Me elimination selectivity. At 40~100 ℃, zirconocene complexes C2 and C3 bearing a 2, 7- or 3, 6-di-tert-butyl- substituted fluorenyl moiety showed significantly higher β-Me elimination selectivities (C2, 81%~86%; C3, 68%~77%), affording propylene oligomers (Mn 400~4500 g·mol-1) with allyl-dominant chain-ends. Moreover the substitution pattern of the fluorenyl moiety also substantially influenced the catalytic activities. The incorporation of an electron-donating 2, 7-di-tert-butyl groups on the fluorenyl moiety led to notably increased catalytic activities of complex C2 at higher temper-atures above 60 ℃, while complex C3 bearing a 3, 6-di-tert-butyl-substituted fluorenyl moiety showed lowest activities among the zirconocene series due to its overcrowded coordination sites. Compared with its zirconocene analogue, the hafnocene complex C4 activated with TIBA/TrB proved to be even more selective toward β-Me elimination, and meanwhile gave products with much lower molecular weights. At 100 ℃, the hafnocene system mainly oligomerized propylene to dimers and trimers. Studies on the dependence of the product molecular weight and the chain-release selectivity on monomer concentration suggested that both β-Me and β-H elimination involved in these systems mainly operate in a bimolecular pathway.
  • 加载中
    1. [1]

      O'Reilly, M. E.; Dutta, S.; Veige, A. S. Chem. Rev. 2016, 116, 8105.  doi: 10.1021/acs.chemrev.6b00054

    2. [2]

      Janiak, C. Coord. Chem. Rev. 2006, 250, 66.  doi: 10.1016/j.ccr.2005.02.016

    3. [3]

      Janiak, C.; Blank, F. Macromol. Symp. 2006, 236, 14.  doi: 10.1002/masy.200690047

    4. [4]

      Janiak, C.; Lange, K. C. H.; Marquardt, P.; Krüger, R.-P.; Hanselmann, R. Macromol. Chem. Phys. 2002, 203, 129.  doi: 10.1002/1521-3935(20020101)203:1<129::AID-MACP129>3.0.CO;2-C

    5. [5]

      Resconi, L.; Camurati, I.; Sudmeijer, O. Top. Catal. 1999, 7, 145.  doi: 10.1023/A:1019115801193

    6. [6]

      Chen, Z.; Mao, Y.; Cao, Y.; Liang, S.; Song, S.; Ni, C.; Liu, Z.; Ye, X.; Shen, A.; Zhu, H. Chin. J. Org. Chem. 2018, 38, 2937.
       

    7. [7]

      Tsou, A. H.; López-Barrón, C. R.; Jiang, P.; Crowther, D. J.; Zeng, Y. Polymer 2016, 104, 72.  doi: 10.1016/j.polymer.2016.09.088

    8. [8]

      Ohtaki, H.; Deplace, F.; Vo, G. D.; LaPointe, A. M.; Shimizu, F.; Sugano, T.; Kramer, E. J.; Fredrickson, G. H.; Coates, G. W. Macromolecules 2015, 48, 7489.  doi: 10.1021/acs.macromol.5b01975

    9. [9]

      Schöbel, A.; Lanzinger, D.; Rieger, B. Organometallics 2013, 32, 427.  doi: 10.1021/om300781a

    10. [10]

      Rose, J. M.; Mourey, T. H.; Slater, L. A.; Keresztes, I.; Fetters, L. J.; Coates, G. W. Macromolecules 2008, 41, 559.  doi: 10.1021/ma702190c

    11. [11]

      Weng, W.; Markel, E. J.; Peacock, A. J.; Dekmezian, A. H. Macromol. Rapid Commun. 2001, 22, 1488.  doi: 10.1002/1521-3927(20011201)22:18<1488::AID-MARC1488>3.0.CO;2-I

    12. [12]

      Markel, E. Macromolecules 2000, 33, 8541.  doi: 10.1021/ma001087b

    13. [13]

      Watson, P. L.; Roe, D. C. J. Am. Chem. Soc. 1982, 104, 6471.  doi: 10.1021/ja00387a064

    14. [14]

      Eshuis, J. J. W.; Tan, Y. Y.; Teuben, J. H.; Renkema, J. J. Mol. Catal. 1990, 62, 277.  doi: 10.1016/0304-5102(90)85223-5

    15. [15]

      Eshuis, J. J. W.; Tan, Y. Y.; Meetsma, A.; Teuben, J. H.; Renkema, J.; Evens, G. G. Organometallics 1992, 11, 362.  doi: 10.1021/om00037a061

    16. [16]

      Resconi, L.; Piemontesi, F.; Franciscono, G.; Abis, L.; Fiorani, T. J. Am. Chem. Soc. 1992, 114, 1025.  doi: 10.1021/ja00029a035

    17. [17]

      Zhang, L.; Ma, H. Chin. J. Polym. Sci. 2019, 37, 578.  doi: 10.1007/s10118-019-2224-1

    18. [18]

      Machat, M. R.; Lanzinger, D.; Pöthig, A.; Rieger, B. Organometallics 2017, 36, 399.  doi: 10.1021/acs.organomet.6b00814

    19. [19]

      Bader, M.; Marquet, N.; Kirillov, E.; Roisnel, T.; Razavi, A.; Lhost, O.; Carpentier, J.-F. Organometallics 2012, 31, 8375.  doi: 10.1021/om300957k

    20. [20]

      Suzuki, Y.; Yasumoyo, T.; Mashima, K.; Okuda, J. J. Am. Chem. Soc. 2006, 128, 13017.  doi: 10.1021/ja063717g

    21. [21]

      Moscardi, G.; Resconi, L.; Cavallo, L. Organometallics 2001, 20, 1918.  doi: 10.1021/om000680e

    22. [22]

      Weng, W.; Markel, E. J.; Dekmezian, A. H. Macromol. Rapid Commun. 2000, 21, 1103.  doi: 10.1002/1521-3927(20001101)21:16<1103::AID-MARC1103>3.0.CO;2-F

    23. [23]

      Resconi, L.; Piemontesi, F.; Camurati, I.; Sudmeijer, O.; Nifant'ev, I. E.; Ivchenko, P. V.; Kuz'mina, L. G. J. Am. Chem. Soc. 1998, 120, 2308.  doi: 10.1021/ja973160s

    24. [24]

      Resconi, L.; Jones, R. L.; Rheingold, A. L.; Yap, G. P. A. Organometallics 1996, 15, 998.  doi: 10.1021/om950197h

    25. [25]

      Wang, Y.; Huang, W.; Ma, H.; Huang, J. Polyhedron 2014, 76, 81.  doi: 10.1016/j.poly.2014.03.019

    26. [26]

      Deisenhofer, S.; Feifel, T.; Kukral, J.; Klinga, M.; Leskela, M.; Rieger, B. Organometallics 2003, 22, 3495.  doi: 10.1021/om030212f

    27. [27]

      Dietrich, U.; Hackmann, M.; Rieger, B.; Klinga, M.; Leskela, M. J. Am. Chem. Soc. 1999, 121, 4348.  doi: 10.1021/ja9833220

    28. [28]

      Cobzaru, C.; Deisenhofer, S.; Harley, A.; Troll, C.; Hild, S.; Rieger, B. Macromol. Chem. Phys. 2005, 206, 1231.  doi: 10.1002/macp.200400551

    29. [29]

      Rieger, B.; Jany, G.; Fawzi, R.; Steimann, M. Organometallics 1994, 13, 647.  doi: 10.1021/om00014a041

    30. [30]

      Alt, H. G.; Jung, M. J. Organomet. Chem. 1999, 580, 1.  doi: 10.1016/S0022-328X(98)00736-0

    31. [31]

      Thomas, E. J.; Rausch, M. D.; Chien, J. C. W. Organometallics 2000, 19, 4077.  doi: 10.1021/om000256d

    32. [32]

      Thomas, E. J.; Chien, J. C. W.; Rausch, M. D. Macromolecules 2000, 33, 1546.  doi: 10.1021/ma991463w

    33. [33]

      Schmid, M. A.; Alt, H. G.; Milius, W. J. Organomet. Chem. 1995, 501, 101.  doi: 10.1016/0022-328X(95)05640-B

    34. [34]

      Spaleck, W.; Antberg, M.; Rohrmann, J.; Winter, A.; Bachmann, B.; Kiprof, P.; Behm, J.; Herrmann, W. A. Angew. Chem., Int. Ed. Engl. 1992, 31, 1347.  doi: 10.1002/anie.199213471

    35. [35]

      Chen, E. Y.-X.; Marks, T. J. Chem. Rev. 2000, 100, 1391.  doi: 10.1021/cr980462j

    36. [36]

      Busico, V.; Cipullo, R.; Cutillo, F.; Friederichs, N.; Ronca, S.; Wang, B. J. Am. Chem. Soc. 2003, 125, 12402.  doi: 10.1021/ja0372412

    37. [37]

      Stapleton, R. A.; Galan, B. R.; Collins, S.; Simons, R. S.; Garrison, J. C.; Youngs, W. J. J. Am. Chem. Soc. 2003, 125, 9246.  doi: 10.1021/ja030121+

    38. [38]

      Busico, V.; Cipullo, R.; Pellecchia, R.; Talarico, G.; Razavi, A. Macromolecules 2009, 42, 1789.  doi: 10.1021/ma900066n

    39. [39]

      Mise, T.; Kageyama, A.; Miya, S.; Yamazaki, H. Chem. Lett. 1991, 1525.

    40. [40]

      Busico, V.; Brita, D.; Caporaso, L.; Cipullo, R.; Vacatello, M. Macromolecules 1997, 30, 3971.  doi: 10.1021/ma970042g

    41. [41]

      Stehling, U.; Diebold, J.; Kirsten, R.; Roell, W.; Brintzinger, H. H.; Juengling, S.; Muelhaupt, R.; Langhauser, F. Organometallics 1994, 13, 964.  doi: 10.1021/om00015a033

    42. [42]

      Aitola, E.; Surakka, M.; Repo, T.; Linnolahti, M.; Lappalainen, K.; Kervinen, K.; Klinga, M.; Pakkanen, T.; Leskela, M. J. Organomet. Chem. 2005, 690, 773.  doi: 10.1016/j.jorganchem.2004.09.089

    43. [43]

      Perumattam, J.; Shao, C.; Confer, W. L. Synthesis 1994, 1181.

  • 加载中
    1. [1]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    2. [2]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    3. [3]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    4. [4]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    5. [5]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    6. [6]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    7. [7]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    8. [8]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    9. [9]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    10. [10]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    11. [11]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    12. [12]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    13. [13]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    14. [14]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    15. [15]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    16. [16]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    17. [17]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    18. [18]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    19. [19]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    20. [20]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

Metrics
  • PDF Downloads(8)
  • Abstract views(974)
  • HTML views(106)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return