Citation: Zhang Jing, Tang Gong-ao, Zeng Yu, Wang Baoxing, Liu Liwei, Wu Qiang, Yang Lijun, Wang Xizhang, Hu Zheng. Hierarchical Carbon Nanocages as the High-performance Cathode for Li-O2 Battery Promoted by Soluble Redox Mediator[J]. Acta Chimica Sinica, ;2020, 78(6): 572-576. doi: 10.6023/A20030085 shu

Hierarchical Carbon Nanocages as the High-performance Cathode for Li-O2 Battery Promoted by Soluble Redox Mediator

  • Corresponding author: Wu Qiang, wqchem@nju.edu.cn Wang Xizhang, wangxzh@nju.edu.cn
  • Received Date: 24 March 2020
    Available Online: 28 May 2020

    Fund Project: the National Natural Science Foundation of China 21832003the National Natural Science Foundation of China 21972061the National Natural Science Foundation of China 21773111Project supported by the jointly financial support from the National Key Research and Development Program of China (Nos. 2018YFA0209100, 2017YFA0206500) and the National Natural Science Foundation of China (Nos. 21773111, 21972061, 21832003, 21573107 and 51571110)the jointly financial support from the National Key Research and Development Program of China 2018YFA0209100the jointly financial support from the National Key Research and Development Program of China 2017YFA0206500the National Natural Science Foundation of China 51571110the National Natural Science Foundation of China 21573107

Figures(4)

  • Li-O2 batteries have received much attention due to the high theoretical energy density. However, they still suffer from many challenges such as unsatisfactory practical specific capacity, cycle stability, and relatively high overpotential. The electrochemical performance of Li-O2 batteries is closely related to the reversibility of the discharge (oxygen reduction reaction, ORR) and charge (oxygen evolution reaction, OER) processes. During the discharge process, non-conductive Li2O2 product is formed and gradually covers on the surface of the positive electrode material, leading to the deactivation of battery. The charging process is accompanied by the electrochemical decomposition of Li2O2 products. Therefore, how to achieve the highly reversible formation and decomposition of the Li2O2 product is the key to improve the electrochemical performance of Li-O2 batteries. To date, two strategies have been developed:(ⅰ) sp2 carbon materials with large specific surface area, suitable pore structure and high conductivity are used as cathode materials to disperse/accommodate the Li2O2 product and promote the electron transfer; (ⅱ) the soluble redox mediators with ORR/OER bifunctionally catalytic activities are adopted as the electrolyte additive to promote the formation and decomposition of the Li2O2 product and lower the overpotentials. Recently, we reported a novel 3D hierarchical carbon nanocages (hCNC) featuring on the ultrahigh specific surface area, multiscale pore structure (micro-meso-macropore coexistence), high conductivity, and abundant defects, which demonstrated the excellent electrochemical performances in energy conversion and storage. Herein, taking advantages of hCNC, the high performances of Li-O2 batteries were fabricated, showing high full discharge specific capacity (14080 mAh·g-1) and good cyclability. After adding acetylacetone ferrous (Fe(acac)2) as the redox mediator to electrolyte, the electrochemical performances are further promoted. Namely, the discharge capacity reaches to 23560 mAh·g-1 at the current density of 0.1 A·g-1 (7.82 times of XC-72), and the cycle numbers are up to 138 cycles at the current density of 0.5 A·g-1 and the discharge/charge depth of 800 mAh·g-1 (far higher than 68 cycles of hCNC without Fe(acac)2 and 13 cycles of XC-72). Especially, at the high current density of 5.0 A·g-1, the cycle numbers still reach to 63 cycles, far higher than 21 cycles of hCNC without Fe(acac)2. Such excellent electrochemical performances can be ascribed to:the unique structure of hCNC facilitating electron transfer, reversible conversion of 2Li++O2+2e-⇆Li2O2(s), and dispersion/accommodation of the insulating Li2O2 product; the soluble redox mediator of Fe(acac)2 effectively catalyzing the discharge products of Li2O2 to form uniformly dispersed small-sized particles and decompose completely during the charge process. This provides a promising strategy for improving the performance of Li-O2 batteries via designing novel carbon-based positive electrode materials and adding efficient soluble redox mediators.
  • 加载中
    1. [1]

      Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Nat. Mater. 2012, 11, 19.  doi: 10.1038/nmat3191

    2. [2]

      Girishkumar, G.; McCloskey, B.; Luntz, A. C.; Swanson, S.; Wilcke, W. J. Phys. Chem. Lett. 2010, 1, 2193.  doi: 10.1021/jz1005384

    3. [3]

      Li, F. J.; Zhang, T.; Zhou, H. S. Energy Environ. Sci. 2013, 6, 1125.  doi: 10.1039/c3ee00053b

    4. [4]

      Cheng, F.; Chen, J. Acta Chim. Sinica 2013, 71, 473.  doi: 10.3866/PKU.WHXB201212273
       

    5. [5]

      Gu, D. M.; Zhang, C. M.; Gu, S.; Zhang, Y.; Wang, Y.; Qiang, L. S. Acta Chim. Sinica 2012, 70, 2115.  doi: 10.3866/PKU.WHXB201206141
       

    6. [6]

      Gu, D. M.; Wang, Y.; Gu, S.; Zhang, C. M.; Yang, D. D. Acta Chim. Sinica 2013, 71, 1354.
       

    7. [7]

      Aurbach, D.; McCloskey, B. D.; Nazar, L. F.; Bruce, P. G. Nat. Energy 2016, 1, 1.

    8. [8]

      Yang, S. X.; He, P.; Zhou, H. S. Energy Storage Mater. 2018, 13, 29.  doi: 10.1016/j.ensm.2017.12.020

    9. [9]

      Aetukuri, N. B.; McCloskey, B. D.; García, J. M.; Krupp, L. E.; Viswanathan, V.; Luntz, A. C. Nat. Chem. 2015, 7, 50.  doi: 10.1038/nchem.2132

    10. [10]

      Vivek, J. P.; Homewood, T.; Garcia-Araez, N. J. Phys. Chem. C 2019, 123, 20241.  doi: 10.1021/acs.jpcc.9b03403

    11. [11]

      Gao, X. W.; Jovanov, Z. P.; Chen, Y. H.; Johnson, L. R.; Bruce, P. G.; Angew. Chem., Int. Ed. 2017, 56, 6539.  doi: 10.1002/anie.201702432

    12. [12]

      Balaish, M.; Gao, X. W.; Bruce, P. G.; Ein-Eli, Y. Adv. Mater. Technol. 2019, 4, 1800645.  doi: 10.1002/admt.201800645

    13. [13]

      Shu, C. Z.; Wang, J. Z.; Long, J. P.; Liu, H. K.; Dou, S. X. Adv. Mater. 2019, 1804587.

    14. [14]

      Jung, J. W.; Choi, D. W.; Lee, C. K.; Yoon, K. R.; Yu, S.; Cheong, J. Y.; Kim, C. H.; Cho, S. H.; Park, J. S.; Park, Y. J.; Kim, I. D. Nano Energy 2018, 46, 193.  doi: 10.1016/j.nanoen.2018.01.045

    15. [15]

      Jiang, J.; Liu, X. F.; Zhao, S. Y.; He, P.; Zhou, H. S. Acta Chim. Sinica 2014, 72, 417.
       

    16. [16]

      Shen, X. X.; Zhang, S. S.; Wu, Y. P.; Chen, Y. H. ChemSusChem 2019, 12, 104.  doi: 10.1002/cssc.201802007

    17. [17]

      Lee, D.; Park, H.; Ko, Y.; Park, H.; Hyeon, T.; Kang, K.; Park, J. J. Am. Chem. Soc. 2019, 141, 8047.

    18. [18]

      Deng, H.; Qiao, Y.; Zhang, X.; Qiu, F.; Chang, Z.; He, P.; Zhou, H. J. Mater. Chem. A 2019, 7, 17261.  doi: 10.1039/C9TA04946K

    19. [19]

      Park, J. B.; Lee, S. H.; Jung, H. G.; Aurbach, D.; Sun, Y. K. Adv. Mater. 2018, 30, 1704162.  doi: 10.1002/adma.201704162

    20. [20]

      Chen, Y.; Freunberger, S. A.; Peng, Z.; Fontaine, O.; Bruce, P. G. Nat. Chem. 2013, 5, 489.  doi: 10.1038/nchem.1646

    21. [21]

      Lin, X. D.; Yuan, R. M.; Cao, Y.; Ding, X. B.; Cai, S. R.; Han, B. W.; Hong, Y. H.; Zhou, Z. Y.; Yang, X. L.; Gong, L.; Zheng, M. S.; Dong, Q. F. Chem 2018, 4, 2685.  doi: 10.1016/j.chempr.2018.08.029

    22. [22]

      Xu, J. J.; Chang, Z. W.; Wang, Y.; Liu, D. P.; Zhang, Y.; Zhang, X. B. Adv. Mater. 2016, 28, 9620.  doi: 10.1002/adma.201603454

    23. [23]

      Gao, X.; Chen, Y. H.; Johnson, L.; Bruce, P. G. Nat. Mater. 2016, 15, 918.  doi: 10.1038/nmat4691

    24. [24]

      Lyu, Z. Y.; Yang, L. J.; Xu, D.; Zhao, J.; Lai, H. W.; Jiang, Y. F.; Wu, Q.; Li, Y.; Wang, X. Z.; Hu, Z. Nano Res. 2015, 8, 3535.  doi: 10.1007/s12274-015-0853-4

    25. [25]

      Jiang, Y. F.; Yang, L. J.; Sun, T.; Zhao, J.; Lyu, Z. Y.; Zhuo, O.; Wang, X. Z.; Wu, Q.; Ma, J.; Hu, Z. ACS Catal. 2015, 5, 6707.  doi: 10.1021/acscatal.5b01835

    26. [26]

      Lyu, Z. Y.; Xu, D.; Yang, L. J.; Che, R.; Feng, R.; Zhao, J.; Li, Y.; Wu, Q.; Wang, X. Z.; Hu, Z. Nano Energy 2015, 12, 657.  doi: 10.1016/j.nanoen.2015.01.033

    27. [27]

      Chen, S.; Bi, J. Y.; Zhao, Y.; Yang, L. J.; Zhang, C.; Ma, Y. W.; Wu, Q.; Wang, X. Z.; Hu, Z. Adv. Mater. 2012, 24, 5593.  doi: 10.1002/adma.201202424

  • 加载中
    1. [1]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    2. [2]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    3. [3]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    4. [4]

      Kunyao PengXianbin WangXingbin Yan . Converting LiNO3 additive to single nitrogenous component Li2N2O2 SEI layer on Li metal anode in carbonate-based electrolyte. Chinese Chemical Letters, 2024, 35(9): 109274-. doi: 10.1016/j.cclet.2023.109274

    5. [5]

      Peng JiaYunna GuoDongliang ChenXuedong ZhangJingming YaoJianguo LuLiqiang ZhangIn-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624

    6. [6]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    7. [7]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

    8. [8]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    9. [9]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    10. [10]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    11. [11]

      Mingjiao LuZhixing WangGui LuoHuajun GuoXinhai LiGuochun YanQihou LiXianglin LiDing WangJiexi Wang . Boosting the performance of LiNi0.90Co0.06Mn0.04O2 electrode by uniform Li3PO4 coating via atomic layer deposition. Chinese Chemical Letters, 2024, 35(5): 108638-. doi: 10.1016/j.cclet.2023.108638

    12. [12]

      Zizhuo Liang Fuming Du Ning Zhao Xiangxin Guo . Revealing the reason for the unsuccessful fabrication of Li3Zr2Si2PO12 by solid state reaction. Chinese Journal of Structural Chemistry, 2023, 42(11): 100108-100108. doi: 10.1016/j.cjsc.2023.100108

    13. [13]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    14. [14]

      Yubang Li Xixi Hu Daiqian Xie . The microscopic formation mechanism of O + H2 products from photodissociation of H2O. Chinese Journal of Structural Chemistry, 2024, 43(5): 100274-100274. doi: 10.1016/j.cjsc.2024.100274

    15. [15]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    16. [16]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    17. [17]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    18. [18]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    19. [19]

      Cuiwu MOGangmin ZHANGChao WUZhipeng HUANGChi ZHANG . A(NH2SO3) (A=Li, Na): Two ultraviolet transparent sulfamates exhibiting second harmonic generation response. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1387-1396. doi: 10.11862/CJIC.20240045

    20. [20]

      Miaomiao LiMengwei YuanXingzi ZhengKunyu HanGenban SunFujun LiHuifeng Li . Highly polar CoP/Co2P heterojunction composite as efficient cathode electrocatalyst for Li-air battery. Chinese Chemical Letters, 2024, 35(9): 109265-. doi: 10.1016/j.cclet.2023.109265

Metrics
  • PDF Downloads(2)
  • Abstract views(422)
  • HTML views(86)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return