Citation: Huang Rongyi, Shen Qiong, Zhang Chao, Zhang Shaoyong, Xu Heng. Studies on the Mechanism of the Transition Metal-Catalyzed Reaction of Organonitrile with Sodium Azide[J]. Acta Chimica Sinica, ;2020, 78(6): 565-571. doi: 10.6023/A20030084 shu

Studies on the Mechanism of the Transition Metal-Catalyzed Reaction of Organonitrile with Sodium Azide

  • Corresponding author: Huang Rongyi, aqhuangry@hotmail.com Xu Heng, aqxuhengg@163.com
  • Received Date: 24 March 2020
    Available Online: 14 May 2020

    Fund Project: the National Natural Science Foundation of China 21975003Project supported by the National Natural Science Foundation of China (No. 21975003) and the Program for Innovative Research Team in Anqing Normal University

Figures(13)

  • The study on the reaction mechanism of organonitrile and sodium azide catalyzed by transition metals has always been a challenging and controversial task. Due to the difficulty in capturing the reaction intermediates, there is still no direct evidence to uncover the nature of the reaction. In this paper, the reaction mechanism has been explored by using a combining theoretical and experimental method. Based on the theoretical analysis of the stability of two types of intermediates (H2O)3M…N3- and (H2O)3M…NCCH3 and the successful capture of two activated intermediates containing metal cadmium ions Cd2(μ3-N3)(μ3-OH)(μ5-CHDA) (1) and Cd(μ2-N3)(μ3-IBA) (2) (H2CHDA=1, 3-cycloadipic acid and HIBA=4-(imi-dazol-1-yl) benzoic acid), which were achieved under the hydrothermal conditions and characterized by single-crystal XRD analysis. For the first time, the experimental and theoretical results reveal that the transition metal ions activate the azide rather than the cyano group of nitriles. In addition, the results of both the electrostatic potential basins analysis of activated intermediates (H2O)3M…N3- and acetonitrile molecules obtained by the theoretical calculation and our recently reported experimental results reveal that the intermediates (H2O)3M…N3- can be used as electrophilic reagent. Its uncoordinated terminal N atom can attack the N atom of the cyano group of acetonitrile to undergo a nucleophilic addition reaction during the chemical reaction progress, and then it may undergo a[2+3] cycloaddition reaction to in-situ form tetrazole. Moreover, with the aid of water molecules, its adducts may also occur similar to the Ritter-like reaction to in-situ form polynitrogen anion. Our findings may open a novel field of the in-situ synthesis of polynitrogen compounds based on the transition metal-catalyzed reactions of organonitrile and azide.
  • 加载中
    1. [1]

      Demko, Z. P.; Sharpless, K. B. Angew. Chem., Int. Ed. 2002, 41, 2110.  doi: 10.1002/1521-3773(20020617)41:12<2110::AID-ANIE2110>3.0.CO;2-7

    2. [2]

      Demko, Z. P.; Sharpless, K. B. Angew. Chem., Int. Ed. 2002, 41, 2113.  doi: 10.1002/1521-3773(20020617)41:12<2113::AID-ANIE2113>3.0.CO;2-Q

    3. [3]

      Wu, T.; Yi, B. H.; Li, D. Inorg. Chem. 2005, 44, 4130.  doi: 10.1021/ic050063o

    4. [4]

      Ye, Q.; Wang, X. S.; Zhao, H.; Xiong, R. G. Chem. Soc. Rew. 2005, 34, 208.  doi: 10.1039/B407253G

    5. [5]

      Chen, X. M.; Tong, M. L. Acc. Chem. Res. 2007, 40, 162.  doi: 10.1021/ar068084p

    6. [6]

      Li, J. R.; Tao, Y.; Yu, Q.; Bu, X. H. Chem. Commun. 2007, 1527.
       

    7. [7]

      Zhao, H.; Qu, Z. R.; Ye, H. Y.; Xiong, R. G. Chem. Soc. Rev. 2008, 37, 84.  doi: 10.1039/B616738C

    8. [8]

      Shang, J.; Zhang, J.; Cui, Y.; Zhang, T.; Shu, Y.; Yang, L. Acta Chim. Sinica 2010, 68, 233 (in Chinese).
       

    9. [9]

      Cantillo, D.; Gutmann, B.; Oliver Kappe, C. J. Am. Chem. Soc. 2011, 133, 4465.  doi: 10.1021/ja109700b

    10. [10]

      Wang, S. H.; Zheng, F. K.; Wu, M. F.; Liu, Z. F.; Chen, J.; Guo, G. C.; Wu, A. Q. CrystEngComm 2013, 15, 2616.  doi: 10.1039/c3ce27048c

    11. [11]

      Li, X.; Cheng, L.; Fang, W.; Yang, G. Acta Chim. Sinica 2013, 71, 179 (in Chinese).
       

    12. [12]

      Feng, Y.; Liu, X.; Duan, L.; Yang, Q.; Wei, Q.; Xie, G.; Chen, S.; Yang, X.; Gao, S. Dalton Trans. 2015, 44, 2333.  doi: 10.1039/C4DT03131H

    13. [13]

      Liu, X.; Gao, W.; Sun, P.; Su, Z.; Chen, S.; Wei, Q.; Xie, G.; Gao, S. Green Chem. 2015, 17, 831.  doi: 10.1039/C4GC02184C

    14. [14]

      Xiong, R. G.; Xue, X.; Zhao, H.; You, X. Z.; Abrahams, B. F.; Xue, Z. Angew. Chem., Int. Ed. 2002, 41, 3800.  doi: 10.1002/1521-3773(20021018)41:20<3800::AID-ANIE3800>3.0.CO;2-3

    15. [15]

      Jin, T.; Kitahara, F. K.; Kamijo, S.; Yamamoto, Y. Chem. Asian J. 2008, 3, 1575.  doi: 10.1002/asia.200800085

    16. [16]

      Himo, F.; Demko, Z. P.; Noodleman, L.; Sharpless, K. B. J. Am. Chem. Soc. 2003, 125, 9983.  doi: 10.1021/ja030204q

    17. [17]

      Zhong, D. C.; Wen, Y. Q.; Deng, J. H.; Luo, X. Z.; Gong, Y. N.; Lu, T. B. Angew. Chem., Int. Ed. 2015, 54, 11795.  doi: 10.1002/anie.201505118

    18. [18]

      Cantillo, D.; Gutmann, B.; Kappe, C. O. J. Am. Chem. Soc. 2011, 133, 4465.  doi: 10.1021/ja109700b

    19. [19]

      Huang, R. Y.; Zhang, C.; Yan, D.; Xiong, Z.; Xu, H.; Ren, X. M. RSC Adv. 2018, 8, 39929.  doi: 10.1039/C8RA08486F

    20. [20]

      Bader, R. F. W.; Essén, H. J. Chem. Phys. 1984, 80, 1943.
       

    21. [21]

      Crèmer, D.; Kraka, E. Croat. Chem. Acta 1984, 57, 1259.

    22. [22]

      Cremer, D.; Kraka, E. Angew. Chem., Int. Ed. 1984, 23, 67.  doi: 10.1002/anie.198400671

    23. [23]

      Espinosa, E.; Alkorta, I.; Elguero, J.; Molins, E. J. Chem. Phys. 2004, 387, 481.

    24. [24]

      Ritter, J. J.; Minieri, P. P. J. Am. Chem. Soc. 1948, 70, 4045.  doi: 10.1021/ja01192a022

    25. [25]

      Ritter, J. J.; Kalish, J. J. Am. Chem. Soc. 1948, 70, 4048.  doi: 10.1021/ja01192a023

    26. [26]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford, CT, 2013.

    27. [27]

      Becke, A. D. Phys. Rev. A 1998, 38, 3098.
       

    28. [28]

      Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.  doi: 10.1103/PhysRevB.37.785

    29. [29]

      Becke, A. D. J. Chem. Phys. 1993, 98, 5648.  doi: 10.1063/1.464913

    30. [30]

      Andrae, D.; Häuerman, U.; Dolg, M.; Stoll, H.; Preu, H. Theor. Chim. Acta 1990, 77, 123.  doi: 10.1007/BF01114537

    31. [31]

      Bader, R. F. W. Atoms in Molecules, A Quantum Theory, Oxford University Press, Oxford, 1990.

    32. [32]

      Boys, S. F.; Bernardi, F. Mol. Phys. 1970, 19, 553.  doi: 10.1080/00268977000101561

    33. [33]

      Lu, T.; Chen, F. W. J. Comp. Chem. 2012, 33, 580.  doi: 10.1002/jcc.22885

  • 加载中
    1. [1]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    2. [2]

      Xueli Mu Lingli Han Tao Liu . Quantum Chemical Calculation Study on the E2 Elimination Reaction of Halohydrocarbon: Designing a Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 68-75. doi: 10.12461/PKU.DXHX202404057

    3. [3]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    4. [4]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    5. [5]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    6. [6]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    7. [7]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    8. [8]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    9. [9]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    10. [10]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    11. [11]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    12. [12]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    13. [13]

      Supin Zhao Jing Xie . Understanding the Vibrational Stark Effect of Water Molecules Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 178-185. doi: 10.12461/PKU.DXHX202406024

    14. [14]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    15. [15]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    16. [16]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    17. [17]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    18. [18]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    19. [19]

      Yanan Jiang Yuchen Ma . Brief Discussion on the Electronic Exchange Interaction in Quantum Chemistry Computations. University Chemistry, 2025, 40(3): 10-15. doi: 10.12461/PKU.DXHX202402058

    20. [20]

      Yaqin Zheng Lian Zhuo Meng Li Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119

Metrics
  • PDF Downloads(17)
  • Abstract views(1359)
  • HTML views(376)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return