Citation: Huang Rongyi, Shen Qiong, Zhang Chao, Zhang Shaoyong, Xu Heng. Studies on the Mechanism of the Transition Metal-Catalyzed Reaction of Organonitrile with Sodium Azide[J]. Acta Chimica Sinica, ;2020, 78(6): 565-571. doi: 10.6023/A20030084 shu

Studies on the Mechanism of the Transition Metal-Catalyzed Reaction of Organonitrile with Sodium Azide

  • Corresponding author: Huang Rongyi, aqhuangry@hotmail.com Xu Heng, aqxuhengg@163.com
  • Received Date: 24 March 2020
    Available Online: 14 May 2020

    Fund Project: the National Natural Science Foundation of China 21975003Project supported by the National Natural Science Foundation of China (No. 21975003) and the Program for Innovative Research Team in Anqing Normal University

Figures(13)

  • The study on the reaction mechanism of organonitrile and sodium azide catalyzed by transition metals has always been a challenging and controversial task. Due to the difficulty in capturing the reaction intermediates, there is still no direct evidence to uncover the nature of the reaction. In this paper, the reaction mechanism has been explored by using a combining theoretical and experimental method. Based on the theoretical analysis of the stability of two types of intermediates (H2O)3M…N3- and (H2O)3M…NCCH3 and the successful capture of two activated intermediates containing metal cadmium ions Cd2(μ3-N3)(μ3-OH)(μ5-CHDA) (1) and Cd(μ2-N3)(μ3-IBA) (2) (H2CHDA=1, 3-cycloadipic acid and HIBA=4-(imi-dazol-1-yl) benzoic acid), which were achieved under the hydrothermal conditions and characterized by single-crystal XRD analysis. For the first time, the experimental and theoretical results reveal that the transition metal ions activate the azide rather than the cyano group of nitriles. In addition, the results of both the electrostatic potential basins analysis of activated intermediates (H2O)3M…N3- and acetonitrile molecules obtained by the theoretical calculation and our recently reported experimental results reveal that the intermediates (H2O)3M…N3- can be used as electrophilic reagent. Its uncoordinated terminal N atom can attack the N atom of the cyano group of acetonitrile to undergo a nucleophilic addition reaction during the chemical reaction progress, and then it may undergo a[2+3] cycloaddition reaction to in-situ form tetrazole. Moreover, with the aid of water molecules, its adducts may also occur similar to the Ritter-like reaction to in-situ form polynitrogen anion. Our findings may open a novel field of the in-situ synthesis of polynitrogen compounds based on the transition metal-catalyzed reactions of organonitrile and azide.
  • 加载中
    1. [1]

      Demko, Z. P.; Sharpless, K. B. Angew. Chem., Int. Ed. 2002, 41, 2110.  doi: 10.1002/1521-3773(20020617)41:12<2110::AID-ANIE2110>3.0.CO;2-7

    2. [2]

      Demko, Z. P.; Sharpless, K. B. Angew. Chem., Int. Ed. 2002, 41, 2113.  doi: 10.1002/1521-3773(20020617)41:12<2113::AID-ANIE2113>3.0.CO;2-Q

    3. [3]

      Wu, T.; Yi, B. H.; Li, D. Inorg. Chem. 2005, 44, 4130.  doi: 10.1021/ic050063o

    4. [4]

      Ye, Q.; Wang, X. S.; Zhao, H.; Xiong, R. G. Chem. Soc. Rew. 2005, 34, 208.  doi: 10.1039/B407253G

    5. [5]

      Chen, X. M.; Tong, M. L. Acc. Chem. Res. 2007, 40, 162.  doi: 10.1021/ar068084p

    6. [6]

      Li, J. R.; Tao, Y.; Yu, Q.; Bu, X. H. Chem. Commun. 2007, 1527.
       

    7. [7]

      Zhao, H.; Qu, Z. R.; Ye, H. Y.; Xiong, R. G. Chem. Soc. Rev. 2008, 37, 84.  doi: 10.1039/B616738C

    8. [8]

      Shang, J.; Zhang, J.; Cui, Y.; Zhang, T.; Shu, Y.; Yang, L. Acta Chim. Sinica 2010, 68, 233 (in Chinese).
       

    9. [9]

      Cantillo, D.; Gutmann, B.; Oliver Kappe, C. J. Am. Chem. Soc. 2011, 133, 4465.  doi: 10.1021/ja109700b

    10. [10]

      Wang, S. H.; Zheng, F. K.; Wu, M. F.; Liu, Z. F.; Chen, J.; Guo, G. C.; Wu, A. Q. CrystEngComm 2013, 15, 2616.  doi: 10.1039/c3ce27048c

    11. [11]

      Li, X.; Cheng, L.; Fang, W.; Yang, G. Acta Chim. Sinica 2013, 71, 179 (in Chinese).
       

    12. [12]

      Feng, Y.; Liu, X.; Duan, L.; Yang, Q.; Wei, Q.; Xie, G.; Chen, S.; Yang, X.; Gao, S. Dalton Trans. 2015, 44, 2333.  doi: 10.1039/C4DT03131H

    13. [13]

      Liu, X.; Gao, W.; Sun, P.; Su, Z.; Chen, S.; Wei, Q.; Xie, G.; Gao, S. Green Chem. 2015, 17, 831.  doi: 10.1039/C4GC02184C

    14. [14]

      Xiong, R. G.; Xue, X.; Zhao, H.; You, X. Z.; Abrahams, B. F.; Xue, Z. Angew. Chem., Int. Ed. 2002, 41, 3800.  doi: 10.1002/1521-3773(20021018)41:20<3800::AID-ANIE3800>3.0.CO;2-3

    15. [15]

      Jin, T.; Kitahara, F. K.; Kamijo, S.; Yamamoto, Y. Chem. Asian J. 2008, 3, 1575.  doi: 10.1002/asia.200800085

    16. [16]

      Himo, F.; Demko, Z. P.; Noodleman, L.; Sharpless, K. B. J. Am. Chem. Soc. 2003, 125, 9983.  doi: 10.1021/ja030204q

    17. [17]

      Zhong, D. C.; Wen, Y. Q.; Deng, J. H.; Luo, X. Z.; Gong, Y. N.; Lu, T. B. Angew. Chem., Int. Ed. 2015, 54, 11795.  doi: 10.1002/anie.201505118

    18. [18]

      Cantillo, D.; Gutmann, B.; Kappe, C. O. J. Am. Chem. Soc. 2011, 133, 4465.  doi: 10.1021/ja109700b

    19. [19]

      Huang, R. Y.; Zhang, C.; Yan, D.; Xiong, Z.; Xu, H.; Ren, X. M. RSC Adv. 2018, 8, 39929.  doi: 10.1039/C8RA08486F

    20. [20]

      Bader, R. F. W.; Essén, H. J. Chem. Phys. 1984, 80, 1943.
       

    21. [21]

      Crèmer, D.; Kraka, E. Croat. Chem. Acta 1984, 57, 1259.

    22. [22]

      Cremer, D.; Kraka, E. Angew. Chem., Int. Ed. 1984, 23, 67.  doi: 10.1002/anie.198400671

    23. [23]

      Espinosa, E.; Alkorta, I.; Elguero, J.; Molins, E. J. Chem. Phys. 2004, 387, 481.

    24. [24]

      Ritter, J. J.; Minieri, P. P. J. Am. Chem. Soc. 1948, 70, 4045.  doi: 10.1021/ja01192a022

    25. [25]

      Ritter, J. J.; Kalish, J. J. Am. Chem. Soc. 1948, 70, 4048.  doi: 10.1021/ja01192a023

    26. [26]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford, CT, 2013.

    27. [27]

      Becke, A. D. Phys. Rev. A 1998, 38, 3098.
       

    28. [28]

      Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.  doi: 10.1103/PhysRevB.37.785

    29. [29]

      Becke, A. D. J. Chem. Phys. 1993, 98, 5648.  doi: 10.1063/1.464913

    30. [30]

      Andrae, D.; Häuerman, U.; Dolg, M.; Stoll, H.; Preu, H. Theor. Chim. Acta 1990, 77, 123.  doi: 10.1007/BF01114537

    31. [31]

      Bader, R. F. W. Atoms in Molecules, A Quantum Theory, Oxford University Press, Oxford, 1990.

    32. [32]

      Boys, S. F.; Bernardi, F. Mol. Phys. 1970, 19, 553.  doi: 10.1080/00268977000101561

    33. [33]

      Lu, T.; Chen, F. W. J. Comp. Chem. 2012, 33, 580.  doi: 10.1002/jcc.22885

  • 加载中
    1. [1]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    2. [2]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    3. [3]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    4. [4]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    5. [5]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    6. [6]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    7. [7]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    8. [8]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    9. [9]

      Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060

    10. [10]

      Dongju Zhang Rongxiu Zhu . Construction of Ideological and Political Education in Quantum Chemistry Course: Several Teaching Cases to Reveal the Universal Connection of Things. University Chemistry, 2024, 39(7): 272-277. doi: 10.3866/PKU.DXHX202311032

    11. [11]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    12. [12]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    13. [13]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    14. [14]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    15. [15]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    16. [16]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    17. [17]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    18. [18]

      Cunling Ye Xitong Zhao Hongfang Wang Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043

    19. [19]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    20. [20]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

Metrics
  • PDF Downloads(16)
  • Abstract views(1234)
  • HTML views(347)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return