Citation: Liu Ji-Lin, Yu Kai, Zhang Hong, Jiang Jie. Progress in the Study of Electrochemical Reaction by Mass Spectrometric Ionization Sources[J]. Acta Chimica Sinica, ;2020, 78(6): 504-515. doi: 10.6023/A20030070 shu

Progress in the Study of Electrochemical Reaction by Mass Spectrometric Ionization Sources

  • Corresponding author: Jiang Jie, jiejiang@hitwh.edu.cn
  • Received Date: 16 March 2020
    Available Online: 25 May 2020

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21804027)the National Natural Science Foundation of China 21804027

Figures(18)

  • Electrochemical reaction is a continuous dynamic process, accompanied by generation of short-lived intermediates and complex structural substances. Therefore, precisely and effectively capturing the products of the reaction process is helpful to accurately deduce its reaction mechanism, optimize the reaction parameters and improve the reaction efficiency. At present, the mainstream electrochemical on-line monitoring techniques include spectroscopy, cyclic voltammetry and linear polarization curves. These methods are capable to detect the structure and composition changes of most substances in the reaction process. However, in order to more systematically and accurately grasp the information of all products, the real-time and in situ reaction monitoring technologies needs to be further expanded. Mass spectrometry (MS) has the advantages of high sensitivity, good selectivity, rapid response time and structural analysis, making itself an ideal research method for electrochemical reactions. In recent years, more and more reports on the study of electrochemical reaction by MS have been published. In particular, ambient ionization sources such as electrospray ionization (ESI) and its derived ionization techniques developed for electrochemistry have become a research hotspot. This review introduced the recently published electrochemistry-mass spectrometry (EC-MS) techniques, and described the electrochemical ion sources that designed and developed for different types of electrochemical reactions.
  • 加载中
    1. [1]

      Kuhl, K. P.; Cave, E. R.; Abram, D. N.; Jaramillo, T. F. Energ. Environ. Sci. 2012, 5, 7050.  doi: 10.1039/c2ee21234j

    2. [2]

      Kramer, W. W.; Mccrory, C. C. L. Chem. Sci. 2016, 7, 2506.  doi: 10.1039/C5SC04015A

    3. [3]

      Ren, S.-X.; Joulié, D.; Salvatore, D.; Torbensen, K.; Wang, M.; Robert, M.; Berlinguette, C. P. Science 2019, 365, 367.  doi: 10.1126/science.aax4608

    4. [4]

      Wang, K.; Chen, Y.-P.; Lei, Y.; Zhong, G.-X.; Liu, A.-L.; Zheng, Y.-J.; Sun, Z.-L.; Lin, X.-H.; Chen, Y.-Z. Microchim. Acta 2013, 180, 871.  doi: 10.1007/s00604-013-1005-8

    5. [5]

      Schorr, N. B.; Jiang, A. G.; Joaquín R. L. Anal. Chem. 2018, 90, 7848.  doi: 10.1021/acs.analchem.8b00730

    6. [6]

      Li, C. Y.; Dong, J. C.; Jin, X.; Chen, S.; Panneerselvam, R.; Rudnev, A. V.; Yang, Z. L.; Li, J. F.; Wandlowski, T.; Tian, Z. Q. J. Am. Chem. Soc. 2015, 137, 7648.  doi: 10.1021/jacs.5b04670

    7. [7]

      Lin, X.-M.; Wu, D.-Y.; Gao, P.; Chen, Z.; Ruben, M.; Fichtner, M. Chem. Mater. 2019, 31, 3239.  doi: 10.1021/acs.chemmater.9b00077

    8. [8]

      Benyoucef, A.; Boussalem, S.; Ferrahi, M. I.; Belbachir, M. Synthetic Met. 2010, 160, 1591.  doi: 10.1016/j.synthmet.2010.05.020

    9. [9]

      Liu, Y.; Berná, A.; Climent, V.; Feliu, J. M. Sensor. Actuat. B-Chem. 2015, 209, 781.  doi: 10.1016/j.snb.2014.12.047

    10. [10]

      Concha, B. M.; Chatenet, M.; Ticianelli, E. A.; Lima, F. H. B. J. Phys. Chem. C 2011, 115, 12439.  doi: 10.1021/jp2002589

    11. [11]

      Boisseau, R.; Bussy, U.; Giraudeau, P.; Boujtita, M. Anal. Chem. 2015, 87, 372.  doi: 10.1021/ac5041956

    12. [12]

      Bussy, U.; Boujtita, M. Talanta 2015, 136, 155.  doi: 10.1016/j.talanta.2014.08.033

    13. [13]

      Gomes. B. F.; Silva, P. F.; Lobo, C. M. S.; Santos, M. S.; Colnago, L. A. Anal. Chim. Acta 2017, 983, 91.  doi: 10.1016/j.aca.2017.06.008

    14. [14]

      Wang, J.; Lin, L.; He, Y.; Qin, H.; Yan, S.; Yang, K.; Li, A. Electrochim. Acta 2017, 254, 72.  doi: 10.1016/j.electacta.2017.09.102

    15. [15]

      Lim, H.; Yilmaz, E.; Byon, H. R. J. Phys. Chem. Lett. 2012, 3, 3210.  doi: 10.1021/jz301453t

    16. [16]

      Villevieille, C.; Ebner, M.; Camer, J. L. G.; Marone, F.; Novak, P.; Wood, V. Adv. Mater. 2015, 27, 1676.  doi: 10.1002/adma.201403792

    17. [17]

      Klein, F.; Pinedo, R.; Hering, P.; Polity, A.; Janek, J.; Adelhelm, P. J. Phys. Chem. C 2016, 120, 1400.  doi: 10.1021/acs.jpcc.5b10642

    18. [18]

      Wu, X.; Villevieille, C.; Novak, P.E.; Kazzi, M. Phys. Chem. Chem. Phys. 2018, 20, 11123.  doi: 10.1039/C8CP01213J

    19. [19]

      Philippe, B.; Dedryvere, R.; Gorgoi, M.; Rensmo, H.; Gonbeau, D.; Edstrom, K. J. Am. Chem. Soc. 2013, 135, 9829.  doi: 10.1021/ja403082s

    20. [20]

      Lutz, L.; Dachraoui, W.; Demortière, A.; Johnson, L. R.; Bruce, P. G.; Grimaud, A.; Tarascon, J. M. Nano Lett. 2018, 18, 1280.  doi: 10.1021/acs.nanolett.7b04937

    21. [21]

      Lee, D.; Park, H.; Ko, Y.; Park, H.; Hyeon, T.; Kang, K.; Park, J. J. Am. Chem. Soc. 2019, 141, 8047.

    22. [22]

      Shang, T.; Wen, Y.; Xiao, D.; Gu, L.; Hu, Y.-S.; Li, H. Adv. Energy Mater. 2017, 7, 1700709.  doi: 10.1002/aenm.201700709

    23. [23]

      Shen, J.; Kortlever, R.; Kas, R.; Birdja, Y. Y.; Morales, O. D.; Kwon, Y.; Yanez, I. L.; Schouten, K. J.; Mul, G.; Koper, M. T. Nat. Commun. 2015, 6, 8177.  doi: 10.1038/ncomms9177

    24. [24]

      Minamimoto, H.; Osaka, R.; Murakoshi, K. Electrochim. Acta 2019, 304, 87.  doi: 10.1016/j.electacta.2019.02.088

    25. [25]

      Zheng, Q.; Liu, Y.; Chen, Q.; Hu, M.; Helmy, R.; Sherer, E. C.; Welch, C. J.; Chen, H. J. Am. Chem. Soc. 2015, 137, 14035.  doi: 10.1021/jacs.5b08905

    26. [26]

      El-Aneed, A.; Cohen, A.; Banoub, J. Appl. Spectrosc. Rev. 2009, 44, 210.  doi: 10.1080/05704920902717872

    27. [27]

      Bruckenstein, S.; Gadde, R. R. J. Am. Chem. Soc. 1971, 93, 793.  doi: 10.1021/ja00732a049

    28. [28]

      Nuno, M.; Ball, R. J.; Bowen, C. R. J. Mass Spectrom. 2014, 49, 716.  doi: 10.1002/jms.3396

    29. [29]

      Kuckelmann, U.; Warscheid, S.; Hoffmann T. Anal. Chem. 2000, 72, 1905.  doi: 10.1021/ac991178a

    30. [30]

      Edward, C.; Fortner, J. Z.; Zhang, R. Anal. Chem. 2004, 76, 5436.  doi: 10.1021/ac0493222

    31. [31]

      Kalinoski, H. T.; Hacksell, U.; Barofsky, D. F.; Barofsky, E.; Daves, G. D. J. Am. Chem. Soc. 1985, 107, 6476.  doi: 10.1021/ja00309a009

    32. [32]

      Haven, J. J.; Vandenbergh, J.; Junkers, T. Chem. Commun. 2015, 51, 4611.  doi: 10.1039/C4CC10426A

    33. [33]

      Rand, K. D.; Bache, N.; Nedertoft, M. M.; Jorgensen, T. Anal. Chem. 2011, 83, 8859.  doi: 10.1021/ac202468v

    34. [34]

      Paz-Schmidt, R. A.; Bonrath, W.; Plattner, D. A. Anal. Chem. 2009, 81, 3665.  doi: 10.1021/ac802754q

    35. [35]

      Pasilis, S. P.; Kertesz, V.; Van Berkel, G. J. Anal. Chem. 2008, 80, 1208.  doi: 10.1021/ac701791w

    36. [36]

      Takats, Z.; Wiseman, J. M.; Gologan, B.; Cooks, R. G. Science 2004, 306, 471.  doi: 10.1126/science.1104404

    37. [37]

      Petucci, C.; Diffendal, J.; Kaufman, D.; Mekonnen, B.; Terefenko, G.; Musselman, B. Anal. Chem. 2007, 79, 5064.  doi: 10.1021/ac070443m

    38. [38]

      Ashton, G. P.; Harding, L. P.; Parkes, G. M. B.; Pownall, S. E. Rapid Commun. Mass Spectrom. 2019, 1.

    39. [39]

      Jusys, Z.; Massong, H.; Baltruschat, H. J. Electrochem. Soc. 1999, 146, 1093.  doi: 10.1149/1.1391726

    40. [40]

      Gao, Y.; Tsuji, H.; Hattori, H.; Kita, H. J. Electroanal. Chem. 1994, 372, 195.  doi: 10.1016/0022-0728(93)03291-V

    41. [41]

      Hartung, T.; Baltruschat, H. Langmuir 1990, 6, 953.  doi: 10.1021/la00095a012

    42. [42]

      Wolter, O.; Heitbaum, J. Ber. Bunsenges. Phys. Chem. 1984, 88, 2.  doi: 10.1002/bbpc.19840880103

    43. [43]

      Eggert, G.; Heitbaum, J. Electrochim. Acta 1986, 31, 1443.  doi: 10.1016/0013-4686(86)87057-8

    44. [44]

      Jia, S.; Matsuda, S.; Tamura, S.; Shironita, S.; Umeda, M. Electrochim. Acta 2018, 261, 340.  doi: 10.1016/j.electacta.2017.12.153

    45. [45]

      Zheng, Y.; Chen, W.; Zuo, X.-Q.; Cai, J.; Chen, Y.-X. Electrochem. Commun. 2016, 73, 38.  doi: 10.1016/j.elecom.2016.10.012

    46. [46]

      Qu, Y.; Wang, L.; Li, C.; Gao, Y.; Sik, J. K.; Rao, J.; Yin, G. Int. J. Hydrogen Energ. 2017, 42, 228.  doi: 10.1016/j.ijhydene.2016.08.215

    47. [47]

      Ju, K.-S.; Pak, S.-N.; Ri, C.-N.; Ryo, H.-S.; Kim, K.-I.; So, S.-R.; Ri, C.-K.; Ri, S.-P.; Nam, K.-W.; Pak, K.-S.; Qu, Y. T. Chem. Phys. Lett. 2019, 727, 78.  doi: 10.1016/j.cplett.2019.04.061

    48. [48]

      Amin, H. M. A.; Baltruschat, H. Phys. Chem. Chem. Phys. 2017, 19, 25527.  doi: 10.1039/C7CP03914J

    49. [49]

      Bergmann, A.; Moreno, E. M.; Teschner, D.; Chernev, P.; Gliech, M.; de Araujo, J. F.; Reier, T.; Dau, H.; Strasser, P. Nat. Commun. 2015, 6, 8625.  doi: 10.1038/ncomms9625

    50. [50]

      Amin, H. M. A.; Konigshoven, P.; Hegemann, M.; Baltruschat, H. Anal. Chem. 2019, 91, 12653.  doi: 10.1021/acs.analchem.9b01749

    51. [51]

      Rizo, R.; Lázaro, M. J.; Pastor, E.; Koper, M. T. M. ChemElectroChem 2016, 3, 2196.  doi: 10.1002/celc.201600438

    52. [52]

      Wonders, A. H.; Housmans, T. H. M.; Rosca, V.; Koper, M. T. M. J. Appl. Electrochem. 2006, 36, 1215.  doi: 10.1007/s10800-006-9173-4

    53. [53]

      Clark, E. L.; Bell, A. T. J. Am. Chem. Soc. 2018, 140, 7012.  doi: 10.1021/jacs.8b04058

    54. [54]

      Möller, S.; Barwe, S.; Masa, J.; Wintrich, D.; Seisel, S.; Baltruschat, H.; Schuhmann, W. Angew. Chem. Int. Ed. 2019, 59, 1585.

    55. [55]

      Alwast, D.; Schnaidt, J.; Law, Y. T.; Behm, R. J. Electrochim. Acta 2016, 197, 290.  doi: 10.1016/j.electacta.2015.12.226

    56. [56]

      Ma, S.; Wu, Y.; Wang, J.; Zhang, Y.; Zhang, Y.; Yan, X.; Wei, Y.; Liu, P.; Wang, J.; Jiang, K.; Fan, S.; Xu, Y.; Peng, Z. Nano Lett. 2015, 15, 8084.  doi: 10.1021/acs.nanolett.5b03510

    57. [57]

      Zhou, B.; Guo, L.; Zhang, Y.; Wang, J.; Ma, L.; Zhang, W. H.; Fu, Z.; Peng, Z. Adv. Mater. 2017, 29, 30.

    58. [58]

      Sun, B.; Kretschmer, K.; Xie, X.; Munroe, P.; Peng, Z.; Wang, G. Adv. Mater. 2017, 29, 48.

    59. [59]

      Berkes, B. B.; Jozwiuk, A.; Sommer, H.; Brezesinski, T.; Janek, J. Electrochem. Commun. 2015, 60, 64.  doi: 10.1016/j.elecom.2015.08.002

    60. [60]

      Bruins, A. P. TrAC-Trend. Anal. Chem. 2015, 70, 14.  doi: 10.1016/j.trac.2015.02.016

    61. [61]

      Willms, J. A.; Gleich, H.; Schrempp, M.; Menche, D.; Engeser, M. Chem. Eur. J. 2018, 24, 2663.  doi: 10.1002/chem.201704914

    62. [62]

      Voss, J. M.; Duffy, E. M.; Marsh, B. M.; Garand, E. ChemPlusChem 2017, 82, 691.  doi: 10.1002/cplu.201700085

    63. [63]

      Cui, L.-L.; Wei, Z.-L.; Fei, Q.; Li, M. Chinese J. Anal. Chem. 2018, 47, 23.
       

    64. [64]

      Iftikhar, I.; El-Nour, K.; Mohammed, A.; Brajter-Toth, A. Electrochim. Acta 2017, 249, 145.  doi: 10.1016/j.electacta.2017.07.087

    65. [65]

      Iftikhar, I.; El-Nour, K.; Mohammed, A.; Brajter-Toth, A. Chem-ElectroChem 2018, 5, 1056.

    66. [66]

      Brivio, M.; Liesener, A.; Oosterbroek, R. E.; Verboom, W.; Karst, U.; Berg, A.; Reinhoudt, D. N. Anal. Chem. 2005, 77, 6852.  doi: 10.1021/ac050817g

    67. [67]

      Liu, S.-J.; Yu, Z.-W.; Qiao, L.; Liu, B.-H. Sci. Rep. 2017, 7, 46669.  doi: 10.1038/srep46669

    68. [68]

      Wan, Q.; Chen, S.; Badu-Tawiah, A. K. Chem. Sci. 2018, 9, 5724.  doi: 10.1039/C8SC00251G

    69. [69]

      Gary, J. V.; Baikal, F. Z. Anal. Chem. 1995, 67, 2916.  doi: 10.1021/ac00113a028

    70. [70]

      Abonnenc, M.; Qiao, L.; Liu, B.; Girault, H. H. Annu. Rev. Anal. Chem. 2010, 3, 231.  doi: 10.1146/annurev.anchem.111808.073740

    71. [71]

      Qiu, R.; Zhang, X.; Luo, H.; Shao, Y. Chem. Sci. 2016, 7, 6684.  doi: 10.1039/C6SC01978A

    72. [72]

      Gu, C.; Nie, X.; Jiang, J.; Chen, Z.; Dong, Y.; Zhang, X.; Liu, J.; Yu, Z.; Zhu, Z.; Liu, J.; Liu, X.; Shao, Y. J. Am. Chem. Soc. 2019, 141, 13212.  doi: 10.1021/jacs.9b06299

    73. [73]

      Looi, W. D.; Brown, B.; Chamand, L.; Brajter-Toth, A. Anal. BioAnal. Chem. 2016, 408, 2227.  doi: 10.1007/s00216-015-9246-5

    74. [74]

      Cheng, S.; Wu, Q.; Dewald, H. D.; Chen, H. J. Am. Soc. Mass Spectrom. 2017, 28, 1005.  doi: 10.1007/s13361-016-1450-9

    75. [75]

      Lu, M.; Liu, Y.; Helmy, R.; Martin, G. E.; Dewald, H. D.; Chen, H. J. Am. Soc. Mass Spectrom. 2015, 26, 1676.  doi: 10.1007/s13361-015-1210-2

    76. [76]

      Liu, Y.-M.; Perry, R. H. J. Am. Soc. Mass Spectrom. 2015, 26, 1702.  doi: 10.1007/s13361-015-1224-9

    77. [77]

      Brown, T. A.; Chen, H.; Zare, R. N. Angew. Chem. Int. Ed. 2015, 54, 11183.  doi: 10.1002/anie.201506316

    78. [78]

      Brown, T. A.; Chen, H.; Zare, R. N. J. Am. Chem. Soc. 2015, 137, 7274.  doi: 10.1021/jacs.5b03862

    79. [79]

      Brown, T. A.; Hosseini-Nassab, N.; Chen, H.; Zare, R. N. Chem. Sci. 2016, 7, 329.  doi: 10.1039/C5SC02939B

    80. [80]

      Cheng, H.; Yan, X.; Zare, R. N. Anal. Chem. 2017, 89, 3191.  doi: 10.1021/acs.analchem.6b05124

    81. [81]

      Khanipour, P.; Lçffler, M.; Reichert, A. M.; Haase, F. T.; Mayrhofer, Karl J. J.; Katsounaros, I. Angew. Chem. Int. Ed. 2019, 58, 7273.  doi: 10.1002/anie.201901923

    82. [82]

      Khanipour, P.; Haschke, S.; Bachmann, J.; Mayrhofer, K. J. J.; Katsounaros, I. Electrochim. Acta 2019, 315, 67.  doi: 10.1016/j.electacta.2019.05.070

    83. [83]

      Yu, K.; Zhang, H.; He, J.; Zare, R. N.; Wang, Y.; Li, L.; Li, N.; Zhang, D.; Jiang, J. Anal. Chem. 2018, 90, 7154.  doi: 10.1021/acs.analchem.8b02498

    84. [84]

      Zhang, H.; Yu, K.; Li, N.; He, J.; Qiao, L.; Li, M.; Wang, Y.; Zhang, D.; Jiang, J.; Zare, R. N. Analyst 2018, 143, 4247.  doi: 10.1039/C8AN00957K

    85. [85]

      Narayanan, R.; Basuri, P.; Jana, S. K.; Mahendranath, A.; Bose, S.; Pradeep, T. Analyst 2019, 144, 5404.  doi: 10.1039/C9AN00791A

    86. [86]

      Narayanan, R.; Sarkar, D.; Cooks, R. G.; Pradeep, T. Angew. Chem. Int. Ed. 2014, 53, 5936.  doi: 10.1002/anie.201311053

  • 加载中
    1. [1]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    2. [2]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    3. [3]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    4. [4]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    5. [5]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    6. [6]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    7. [7]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    8. [8]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    9. [9]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    10. [10]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    11. [11]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    12. [12]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    13. [13]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    14. [14]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    15. [15]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    16. [16]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    17. [17]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    18. [18]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    19. [19]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    20. [20]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

Metrics
  • PDF Downloads(30)
  • Abstract views(1655)
  • HTML views(411)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return