Citation: Shui Ziyi, He Nana, Chen Li, Zhao Wei, Chen Xi. Porous Perovskite towards Oxygen Reduction Reaction in Flexible Aluminum-Air Battery[J]. Acta Chimica Sinica, ;2020, 78(6): 557-564. doi: 10.6023/A20030068 shu

Porous Perovskite towards Oxygen Reduction Reaction in Flexible Aluminum-Air Battery

  • Corresponding author: Zhao Wei, zhaowei3313@nwu.edu.cn Chen Xi, xichen863@hotmail.com
  • Received Date: 14 March 2020
    Available Online: 18 May 2020

    Fund Project: the National Natural Science Foundation of China 11872302the Shaanxi Provincial Department of Education Natural Science Special Project 20JK0927the Natural Science Basic Research Program of Shaanxi Province 2019JQ-431Project supported by the National Natural Science Foundation of China (No. 11872302), the Natural Science Basic Research Program of Shaanxi Province (No. 2019JQ-431) and the Shaanxi Provincial Department of Education Natural Science Special Project (No. 20JK0927)

Figures(9)

  • Perovskite-type catalytic materials have received wide attention as high-performance and low-cost alternatives to precious metal catalysts on the market at present, which have much considerable activity and stability as catalysts for oxygen reduction reactions. Current efforts are mainly focused on the use of perovskite make-up and preparation techniques to influence elemental composition, morphology, surface area, and structural control. For a typical perovskite oxide (ABO3), due to the high calcination temperature in the preparation process, the perovskite material usually has a small specific surface area, which limits the increase of activity in heterogeneous catalytic reactions. In this paper, the perovskite La0.7Sr0.3MnO3 (LSMO) material with large specific surface and high catalytic activity is prepared by means of the SiO2 template. The physicochemical properties of the synthesized materials are characterized by scanning electron microscope (SEM), energy dispersed X-ray spectroscopy (EDS), X-ray diffraction (XRD) and BET. The catalytic activity of LSMO as an oxygen reduction reaction (ORR) catalyst is measured by a rotating disk test system. After that, the catalyst material is applied to a flexible aluminum-air battery and its discharge behavior and flexibility is studied and tested. The test results show that the LSMO prepared by template method has a large specific surface area (31.1825 m2·g-1), and pore volume (0.161113 cm3·g-1), and it also shows higher electrocatalytic activity in the electrochemical test system. When it is used in aluminum-air batteries, the activity of 3D porous LSMO is significantly better than that of sheet and bulk LSMO. The aluminum-air battery assembled by LSMO prepared by the template method has a higher discharge voltage (up to 1.46 V) at a constant current. Compared to the template-free method and the sol-gel method, the discharge voltage in flexible aluminum-air battery can be increased by 8.2% and 24.5%, respectively, and the performance degradation is significantly slowed during high-current discharge. The specific capacity and energy density of the battery are up to 1048.6 mA·h·g-1 and 1020.6 mW·h·g-1, respectively. When the battery is in a deformed state, its output voltage can be stabilized above 1.38 V. Once released, the voltage can be immediately restored to over 99% of the initial value. This paper not only provides a solution for the commercialization of fuel cell, but also provides a new direction for the future development of variable power supply.
  • 加载中
    1. [1]

      Song, M. J.; Shin, M. W. Appl. Surf. Sci. 2014, 320, 435.  doi: 10.1016/j.apsusc.2014.09.100

    2. [2]

      Arora, P.; Zhang, Z. J. Chem. Rev. 2004, 104, 4419  doi: 10.1021/cr020738u

    3. [3]

      Xu, Y.; Zhao, Y.; Ren, J.; Zhang, Y.; Peng, H. Angew. Chem., Int. Ed. 2016, 55, 7979.  doi: 10.1002/anie.201601804

    4. [4]

      Que, Y.; Qi, M.; Shi, P. Chin. Battery Ind. 2019, 23, 147.  doi: 10.3969/j.issn.1008-7923.2019.03.007

    5. [5]

      Xie, K.; Wei, B. Adv. Mater. 2014, 26, 3592.  doi: 10.1002/adma.201305919

    6. [6]

      Cheng, F.; Chen, J. Chem. Soc. Rev. 2012, 41, 2172.  doi: 10.1039/c1cs15228a

    7. [7]

      Cheng, F.; Chen, J. Acta Chim. Sinica 2013, 71, 473.  doi: 10.3866/PKU.WHXB201212273
       

    8. [8]

      Hong, Q.; Lu, H. Sci. Rep. 2017, 7, 3378.  doi: 10.1038/s41598-017-03609-9

    9. [9]

      Li, Y. C.; Xu, Z. C.; Gasteiger, H. A.; Chen, S.; Hamad-Schifferli, K.; Yang, S.-H. J. Am. Chem. Soc. 2010, 132, 12170.  doi: 10.1021/ja1036572

    10. [10]

      Meng, H.; Shen, P. K. Electrochem. Commun. 2006, 8, 588.  doi: 10.1016/j.elecom.2006.01.020

    11. [11]

      Hao, J.; Liu, Y.; Li, W.; Li, J. Mater. Rev. 2019, 33, 127.  doi: 10.11896/cldb.201901014

    12. [12]

      Jin, Q.; Pei, L.; Hu, Y.; Du, J.; Han, X.; Cheng, F.; Chen, J. Acta Chim. Sinica 2014, 72, 920.
       

    13. [13]

      Wang, D.; Chen, X.; Evans, D.-G.; Yang, W. Nanoscale 2013, 5, 5312.  doi: 10.1039/c3nr00444a

    14. [14]

      Wang, Y.; Wei, Z. J. Electrochem. 2018, 24, 427.
       

    15. [15]

      Yin, W.; Shen, Y.; Zou, F.; Hu, X.; Chi, B.; Huang, Y. ACS Appl. Mater. Interfaces 2015, 7, 4947.  doi: 10.1021/am509143t

    16. [16]

      Liu, M.; Zhang, R.; Chen, W. Chem. Rev. 2014, 114, 5117.  doi: 10.1021/cr400523y

    17. [17]

      Liu, L.; Yuan, Z.; Qiu, C.; Liu, J. Solid State Ionics 2013, 241, 25.  doi: 10.1016/j.ssi.2013.03.031

    18. [18]

      Wang, Y.; Zhang, L.; Hu, T. Acta Chim. Sinica 2015, 73, 316.
       

    19. [19]

      Miyazaki, K.; Kawakita, K.; Abe, T.; Fukutsuka, T.; Kojima, K.; Ogumi, Z. J. Mater. Chem. 2011, 21, 1913.  doi: 10.1039/C0JM02600J

    20. [20]

      Lin, S.; Xu, S.-F.; Wang, J.-D.; Xie, C.-S.; Yuan, A.-H.; Han, G.-F.; Zhang, L.; Zhang, L.-M.; Li, Y.; Yan, Z.-M. Acta Chim. Sinica 2005, 63, 385.
       

    21. [21]

      Takeguchi, T.; Yamanaka, T.; Takahashi, H.; Watanabe, H.; Kuroki, T.; Nakanishi, H.; Orikasa, Y.; Uchimoto, Y.; Takano, H.; Ohguri, N.; Matsuda, M.; Murota, T.; Uosaki, K.; Ueda, W. J. Am. Chem. Soc. 2013, 135, 11125.  doi: 10.1021/ja403476v

    22. [22]

      Xue, Y.; Miao, H.; Sun, S.; Wang, Q.; Li, S.; Liu, Z. J. Power Sources 2017, 342, 192.  doi: 10.1016/j.jpowsour.2016.12.065

    23. [23]

      Stoerzinger, K. A.; Lü, W.; Li, C.; Ariando; Venkatesan, T.; Yang, S.-H. J. Phys. Chem. Lett. 2015, 6, 1435.  doi: 10.1021/acs.jpclett.5b00439

    24. [24]

      Hu, J.; Wang, L.; Shi, L.; Huang, H. J. Power Sources 2014, 269, 144.  doi: 10.1016/j.jpowsour.2014.07.004

    25. [25]

      Liu, Y.; Dai, H.; Du, Y.; Deng, J.; Zhang, L.; Zhao, Z.; Au, C. T. J. Catal. 2012, 287, 149.  doi: 10.1016/j.jcat.2011.12.015

    26. [26]

      Lee, Y. C.; Peng, P. Y.; Chang, W. S.; Huang, C. M. J. Taiwan Chem. Eng. 2014, 45, 2334.  doi: 10.1016/j.jtice.2014.05.023

    27. [27]

      Stöber, W.; Fink, A.; Bohn, E. J. Colloid Interface Sci. 1968, 26, 62.  doi: 10.1016/0021-9797(68)90272-5

    28. [28]

      Yang, C. H.; Chen, B. J.; Lu, J.; Yang, J. H.; Zhou, J.; Chen, Y. M.; Suo, Z. Extreme Mech. Lett. 2015, 25, 59.

    29. [29]

      Tan, P.; Chen, B.; Xu, H.; Zhang, H.; Cai, W.; Ni, M.; Liu, M.; Shao, Z. Energy Environ. Sci. 2017, 10, 2056.  doi: 10.1039/C7EE01913K

    30. [30]

      Song, S.-D.; Tang, Z.-Y.; Pan, L.-Z.; Nan, J.-M. Acta Chim. Sinica 2005, 63, 363.
       

    31. [31]

      Liu, Y.; Li, J.; Li, W.; Li, Y.; Zhan, F.; Tang, H.; Chen, Q. Int. J. Hydrogen Energy 2016, 41, 10354.  doi: 10.1016/j.ijhydene.2015.10.109

    32. [32]

      Zhang, Z.; Zuo, C.; Liu, Z.; Yu, Y.; Zuo, Y.; Song, Y. J. Power Sources 2014, 251, 470.  doi: 10.1016/j.jpowsour.2013.11.020

  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    3. [3]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    4. [4]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    5. [5]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    6. [6]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    7. [7]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    8. [8]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    9. [9]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    10. [10]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    11. [11]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    12. [12]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    13. [13]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    14. [14]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    15. [15]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    16. [16]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    17. [17]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    18. [18]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    19. [19]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    20. [20]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

Metrics
  • PDF Downloads(15)
  • Abstract views(1336)
  • HTML views(128)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return