Citation: Cai Chengzhi, Li Lifeng, Deng Xiaomei, Li Shuhua, Liang Hong, Qiao Zhiwei. Machine Learning and High-throughput Computational Screening of Metal-organic Framework for Separation of Methane/ethane/propane[J]. Acta Chimica Sinica, ;2020, 78(5): 427-436. doi: 10.6023/A20030065 shu

Machine Learning and High-throughput Computational Screening of Metal-organic Framework for Separation of Methane/ethane/propane

  • Corresponding author: Qiao Zhiwei, zqiao@gzhu.edu.cn
  • † These authors contributed equally to this work.
  • Received Date: 13 March 2020
    Available Online: 16 April 2020

    Fund Project: the National Natural Science Foundation of China 21676094Project supported by the National Natural Science Foundation of China (Nos. 21978058, 21676094, 21576058) and the Natural Science Foundation of Guangdong Province (No. 2020A1515010800)the Natural Science Foundation of Guangdong Province 2020A1515010800the National Natural Science Foundation of China 21576058the National Natural Science Foundation of China 21978058

Figures(4)

  • In this work, the separation performance of methane/ethane/propane (C1, C2 and C3) mixture in the 137953 hypothetical metal-organic frameworks (MOFs) is calculated by high throughput computational screening and multiple machine learning (ML) algorithms. First, to avoid the competitive adsorption of water vapor, 31399 hydrophobic MOFs (hMOFs) were screened out. Then, grand canonical Monte Carlo (GCMC) simulations were employed to calculate the adsorption behavior of a mixture with a mole ratio of C1:C2:C3=7:2:1 in these hMOFs, respectively. Second, the relationships among six MOF structures/energy descriptors (the largest cavity diameter (LCD), void fraction (f), volumetric surface area (VSA), Henry coefficient (K), heat of adsorption (Qst), density of MOF (ρ)) and three performance indicators of MOFs (selectivities (S), adsorption capacities (N) of C1, C2, C3 and their trade-offs (TSN)) were established. The LCDs were calculated by Zeo++software, and VSAs were calculated using RASPA software using He and N2 as probes, respectively, and Qst and K were calculated in an infinite dilution of each gas molecule in an infinite dilution state using NVT-MC method in RASPA software. Then, we found that there existed the "second peaks" of N and S in part of structure-property relationships, and all the optimal MOFs located in the range of second peaks, especially for the separation of C1 or C2. Third, the above-mentioned six MOF descriptors and three MOF performance indicators were trained, tested and predicted by four ML algorithms, including decision tree, random forest (RF), support vector machine and Back Propagation neural network. Although the predictive effect for the selectivity was very low, the introduction of TSN can significantly improve the accuracy of ML prediction, especially for RF algorithm (R=0.99). Therefore, the RF was used to quantitatively analyze the relative importance of each MOF descriptor, and found that three descriptors (K, LCD and ρ) possessed the highest importance for the separation of C1 and C2, and three other descriptors (K, Qst and ρ) for the separation of C3. Moreover, three simple and clear paths of optimal MOFs for C1, C2 and C3 adsorption were designed by the decision tree model with the descriptors. Based on those paths, there were 96%, 85%, 95% probability that we can search for high-performance MOFs, respectively. Finally, the best 18 MOFs were identified for different separation applications of C1, C2 and C3. This study reveals the second peaks and key MOF descriptors governing the adsorption of light alkane, develops quantitative structure-property relationships by ML, and identifies the best adsorbents from a large collection of MOFs for the separation of C1, C2 and C3 from natural gas.
  • 加载中
    1. [1]

      Schoots, K.; Rivera-Tinoco, R.; Verbong, G.; van der Zwaan, B. Int. J. Greenhouse Gas Control. 2011, 5, 1614.  doi: 10.1016/j.ijggc.2011.09.008

    2. [2]

      Wu, F. F. M.S. Thesis, Tianjin University, Tianjin, 2014 (in Chinese).

    3. [3]

      Ravanchi, M. T.; Kaghazchi, T.; Kargari, A.; Soleimani, M. J. Taiwan Inst. Chem. Eng. 2009, 40, 511.  doi: 10.1016/j.jtice.2009.02.007

    4. [4]

      Xie, C. L.; Fang, Y. D. Petrochem. Ind. Technol. 2005, 12, 63.
       

    5. [5]

      Wu, D. M.S. Thesis, Tianjin University, Tianjin, 2012 (in Chinese).

    6. [6]

      Li, X. F.; Li, D. F. Petrochem. Technol. 2007, 36, 94.
       

    7. [7]

      Ma, Y. T.; Cong, S. G.; Hu, Y. F. Energy Chem. Ind. 2017, 38, 34.
       

    8. [8]

      Zhang, H.; Liu, Y. S.; Liu, W. H.; Zhang, D. X.; Zhai, H. Chem. Ind. Eng. Prog. 2007, 26, 95.
       

    9. [9]

      Yu, Q. Q. M.S. Thesis, Beijing University of Chemical Technology, Beijing, 2016 (in Chinese).

    10. [10]

      Li, S. Z. M.S. Thesis, Harbin Institute of Technology, Harbin, 2011 (in Chinese).

    11. [11]

      Wu, X. J.; Zhao, P.; Fang, J. M.; Wang, J.; Liu, B. S.; Cai, W. Q. Acta Phys.-Chim. Sin. 2014, 30, 2043.  doi: 10.3866/PKU.WHXB201409222

    12. [12]

      Zhou, J. H.; Zhao, H. L.; Hu, J.; Liu, H. L.; Hu, Y. CIESC J. 2014, 65, 1680.  doi: 10.3969/j.issn.0438-1157.2014.05.018

    13. [13]

      Zhu, G. F.; Chen, L. T.; Cheng, G. H.; Zhao, J.; Yang, C.; Zhang, Y. Z.; Wang, X.; Fan, J. Acta Chim. Sinica 2019, 77, 434.
       

    14. [14]

      Fu, J.; Zhou, G. Y.; Hou, Z. Y.; Tian, H. C.; Xia, C. M.; Zhang, W.; Liu, J. T.; Wu, J. L.; Zhao, J. D.; Cang, X. L. Opt. Laser Technol. 2017, 91, 22.  doi: 10.1016/j.optlastec.2016.11.027

    15. [15]

      Liu, M. L.; Wu, Q.; Shi, H. F.; An, Z. F.; Huang, W. Acta Chim. Sinica 2018, 76, 246.
       

    16. [16]

      Cardenal, A. D.; Park, H. J.; Chalker, C. J.; Ortiz, K. G.; Powers, D. C. Chem. Commun. 2017, 53, 7377.  doi: 10.1039/C7CC02570J

    17. [17]

      Meng, S. Y.; Wang, M. M.; Lu, B. L.; Xue, Q. J.; Yang, Z. W. Acta Chim. Sinica 2019, 77, 1184.  doi: 10.7503/cjcu20180709
       

    18. [18]

      Wu, Z. M.; Shi, Y.; Li, C. Y.; Niu, D. Y.; Chu, Q.; Xiong, W.; Li, X. Y. Acta Chim. Sinica 2019, 77, 758.
       

    19. [19]

      Liu, R. X.; He, X. Y.; Niu, L. T.; Lv, B. L.; Yu, F.; Zhang, Z.; Yang, Z. W. Acta Chim. Sinica 2019, 77, 653.
       

    20. [20]

      Cao, L. Y.; Wang, T. T.; Wang, C. Chin. J. Chem. 2018, 36,

    21. [21]

      Zou, Z.; Li, S. Q.; He, D. G.; He, X. X.; Wang, K. M.; Li, L. L.; Yang, X.; Li, H. F. J. Mater. Chem. B 2017, 5, 2126.  doi: 10.1039/C6TB03379B

    22. [22]

      Couck, S.; Van Assche, T. R.; Liu, Y. Y.; Baron, G. V.; Van Der Voort, P.; Denayer, J. F. Langmuir 2015, 31, 5063.  doi: 10.1021/acs.langmuir.5b00655

    23. [23]

      Ponraj, Y. K.; Borah, B. J. Mol. Graph. Model. 2020, 97, 107574.  doi: 10.1016/j.jmgm.2020.107574

    24. [24]

      Tang, Y. N.; Wang, S.; Zhou, X.; Wu, Y.; Xian, S. K.; Li, Z. Chem. Eng. Sci. 2020, 213, 115355.  doi: 10.1016/j.ces.2019.115355

    25. [25]

      Fan, W. D.; Wang, X.; Zhang, X. R.; Liu, X. P.; Wang, Y. T.; Kang, Z. X.; Dai, F. N.; Xu, B.; Wang, R. M.; Sun, D. F. ACS Central. Sci. 2019, 5, 1261.  doi: 10.1021/acscentsci.9b00423

    26. [26]

      Chen, Y. W.; Qiao, Z. W.; Lv, D. F.; Wu, H. X.; Shi, R. F.; Xia, Q. B.; Wang, H. H.; Zhou, J.; Li, Z. Ind. Eng. Chem. Res. 2017, 56, 4488.  doi: 10.1021/acs.iecr.6b05010

    27. [27]

      Guo, W. J.; Yu, J.; Dai, Z.; Hou, W. Z. Acta Chim. Sinica 2019, 77, 1203.  doi: 10.11862/CJIC.2019.142
       

    28. [28]

      Wang, X.; Zhang, Y.; Chang, Z.; Huang, H.; Liu, X. T.; Xu, J. L.; Bu, X. H. Chin. J. Chem. 2019, 37, 871.  doi: 10.1002/cjoc.201900247

    29. [29]

      Qiao, W. Z.; Song, T. Q.; Zhao, B. Chin. J. Chem. 2019, 37, 474.  doi: 10.1002/cjoc.201800587

    30. [30]

      Chen, Z. Y.; Liu, J. W.; Cui, H.; Zhang, L.; Su, C. Y. Acta Chim. Sinica 2019, 77, 242.  doi: 10.3969/j.issn.0253-2409.2019.02.014
       

    31. [31]

      Zeng, J. Y.; Wang, X. S.; Zhang, X. Z.; Zhuo, R. X. Acta Chim. Sinica 2019, 77, 1156.
       

    32. [32]

      Liu, Z. L.; Li, W.; Liu, H.; Zhuang, X. D.; Li, S. Acta Chim. Sinica 2019, 77, 323.  doi: 10.11862/CJIC.2019.034
       

    33. [33]

      Bian, L.; Li, W.; Wei, Z. Z.; Liu, X. W.; Li, S. Acta Chim. Sinica 2018, 76, 303.  doi: 10.3866/PKU.WHXB201708302
       

    34. [34]

      Lan, Y. S.; Han, X. H.; Tong, M. M.; Huang, H. L.; Yang, Q. Y.; Liu, D. H.; Zhao, X.; Zhong, C. L. Nat. Commun. 2018, 9, 5274.  doi: 10.1038/s41467-018-07720-x

    35. [35]

      Qiao, Z. W.; Xu, Q. S.; Jiang, J. W. J. Mater. Chem. A 2018, 6, 18898.  doi: 10.1039/C8TA04939D

    36. [36]

      Wu, X. J.; Zheng, J.; Li, J.; Cai, W. Q. Acta Phys.-Chim. Sin. 2013, 29, 2207.  doi: 10.3866/PKU.WHXB201307191

    37. [37]

      Li, W.; Xia, X. X.; Cao, M.; Li, S. J. Mater. Chem. A 2019, 7, 7470.  doi: 10.1039/C8TA07909A

    38. [38]

      Shi, Z. N.; Yang, W. Y.; Deng, X. M.; Cai, C. Z.; Yan, Y. L.; Liang, H.; Liu, Z. L.; Qiao, Z. W. Mol. Syst. Des. Eng. 2020, DOI:10.1039/d0me00005a.  doi: 10.1039/d0me00005a

    39. [39]

      Moghadam, P. Z.; Rogge, S. M. J.; Li, A.; Chow, C.-M.; Wieme, J.; Moharrami, N.; Aragones-Anglada, M.; Conduit, G.; Gomez-Gualdron, D. A.; Van Speybroeck, V.; Fairen-Jimenez, D. Matter 2019, 1, 219.  doi: 10.1016/j.matt.2019.03.002

    40. [40]

      Fernandez, M.; Woo, T. K.; Wilmer, C. E.; Snurr, R. Q. J. Phys. Chem. C 2013, 117, 7681.  doi: 10.1021/jp4006422

    41. [41]

      Shah, M. S.; Tsapatsis, M.; Siepmann, J. I. Angew. Chem. 2016, 128, 6042.  doi: 10.1002/ange.201600612

    42. [42]

      Breiman, L. I.; Friedman, J. H.; Olshen, R. A.; Stone, C. J. Encycl. Ecol. 1984, 40, 358.

    43. [43]

      Breiman, L. Mach. Learn. 2001, 45, 5.  doi: 10.1023/A:1010933404324

    44. [44]

      Raccuglia, P.; Elbert, K. C.; Adler, P. D. F.; Falk, C.; Wenny, M. B.; Mollo, A.; Zeller, M.; Friedler, S. A.; Schrier, J.; Norquist, A. J. Nature 2016, 533, 73.  doi: 10.1038/nature17439

    45. [45]

      Zhang, W. G.; Goh, A. T. C. Geosci. Front. 2014, 7, 45.

    46. [46]

      Wu, X. J.; Xiang, S. C.; Su, J. Q.; Cai, W. Q. J. Phys. Chem. C 2019, 123, 8550.

    47. [47]

      Wang, X.; Zhang, X. R.; Zhang, K.; Wang, X. K.; Wang, Y. T.; Fan, W. D.; Dai, F. N. Inorg. Chem. Front. 2019, 6, 1152.  doi: 10.1039/C8QI01404C

    48. [48]

      Llewellyn, P. L.; Horcajada, P.; Maurin, G.; Devic, T.; Rosenbach, N.; Bourrelly, S.; Serre, C.; Vincent, D.; Loera-Serna, S.; Filinchuk, Y.; Férey, G. J. Am. Chem. Soc. 2009, 131, 13002.  doi: 10.1021/ja902740r

    49. [49]

      Wilmer, C. E.; Farha, O. K.; Yildirim, T.; Eryazici, I.; Krunglevi-ciute, V.; Sarjeant, A. A.; Snurr, R. Q.; Hupp, J. T. Energy Environ. Sci. 2013, 6, 1158.  doi: 10.1039/c3ee24506c

    50. [50]

      Wilmer, C. E.; Leaf, M.; Lee, C. Y.; Farha, O. K.; Hauser, B. G.; Hupp, J. T.; Snurr, R. Q. Nat. Chem. 2012, 4, 83.  doi: 10.1038/nchem.1192

    51. [51]

      Rappé, A. K.; Casewit, C. J.; Colwell, K. S.; III, W. A. G.; Skiff, W. M. J. Am. Chem. Soc. 1992, 114, 10024.  doi: 10.1021/ja00051a040

    52. [52]

      Martin, G. M.; Siepmann, J. I. J. Phys. Chem. B 1998, 102, 2569.  doi: 10.1021/jp972543+

    53. [53]

      Horn, H. W.; Swope, W. C.; Pitera, J. W.; Madura, J. D.; Head-Gordon, T. J. Chem. Phys. 2004, 120, 9665.
       

    54. [54]

      Kadantsev, E. S.; Boyd, P. G.; Daff, T. D.; Woo, T. K. J. Phys. Chem. Lett. 2013, 4, 3056.  doi: 10.1021/jz401479k

    55. [55]

      Willems, T. F.; Rycroft, C. H.; Kazi, M.; Meza, J. C.; Haranczyk, M. Microporous Mesoporous Mater. 2012, 149, 134.  doi: 10.1016/j.micromeso.2011.08.020

    56. [56]

      Dubbeldam, D.; Calero, S.; Ellis, D. E.; Snurr, R. Q. Mol. Simul. 2015, 42, 81.

    57. [57]

      Moghadam, P. Z.; Fairen-Jimenez, D.; Snurr, R. Q. J. Mater. Chem. A 2016, 4, 529.  doi: 10.1039/C5TA06472D

    58. [58]

      Ewald, P. P. Ann. Phys. 2006, 369, 253.
       

  • 加载中
    1. [1]

      Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060

    2. [2]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    3. [3]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    4. [4]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    5. [5]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    6. [6]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    7. [7]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    8. [8]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    9. [9]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    10. [10]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    11. [11]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    12. [12]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    13. [13]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    14. [14]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    15. [15]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    16. [16]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    17. [17]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    18. [18]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    19. [19]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    20. [20]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

Metrics
  • PDF Downloads(52)
  • Abstract views(2970)
  • HTML views(549)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return