Machine Learning and High-throughput Computational Screening of Metal-organic Framework for Separation of Methane/ethane/propane
- Corresponding author: Qiao Zhiwei, zqiao@gzhu.edu.cn † These authors contributed equally to this work.
Citation:
Cai Chengzhi, Li Lifeng, Deng Xiaomei, Li Shuhua, Liang Hong, Qiao Zhiwei. Machine Learning and High-throughput Computational Screening of Metal-organic Framework for Separation of Methane/ethane/propane[J]. Acta Chimica Sinica,
;2020, 78(5): 427-436.
doi:
10.6023/A20030065
Schoots, K.; Rivera-Tinoco, R.; Verbong, G.; van der Zwaan, B. Int. J. Greenhouse Gas Control. 2011, 5, 1614.
doi: 10.1016/j.ijggc.2011.09.008
Wu, F. F. M.S. Thesis, Tianjin University, Tianjin, 2014 (in Chinese).
Ravanchi, M. T.; Kaghazchi, T.; Kargari, A.; Soleimani, M. J. Taiwan Inst. Chem. Eng. 2009, 40, 511.
doi: 10.1016/j.jtice.2009.02.007
Xie, C. L.; Fang, Y. D. Petrochem. Ind. Technol. 2005, 12, 63.
Wu, D. M.S. Thesis, Tianjin University, Tianjin, 2012 (in Chinese).
Ma, Y. T.; Cong, S. G.; Hu, Y. F. Energy Chem. Ind. 2017, 38, 34.
Zhang, H.; Liu, Y. S.; Liu, W. H.; Zhang, D. X.; Zhai, H. Chem. Ind. Eng. Prog. 2007, 26, 95.
Yu, Q. Q. M.S. Thesis, Beijing University of Chemical Technology, Beijing, 2016 (in Chinese).
Li, S. Z. M.S. Thesis, Harbin Institute of Technology, Harbin, 2011 (in Chinese).
Wu, X. J.; Zhao, P.; Fang, J. M.; Wang, J.; Liu, B. S.; Cai, W. Q. Acta Phys.-Chim. Sin. 2014, 30, 2043.
doi: 10.3866/PKU.WHXB201409222
Zhou, J. H.; Zhao, H. L.; Hu, J.; Liu, H. L.; Hu, Y. CIESC J. 2014, 65, 1680.
doi: 10.3969/j.issn.0438-1157.2014.05.018
Zhu, G. F.; Chen, L. T.; Cheng, G. H.; Zhao, J.; Yang, C.; Zhang, Y. Z.; Wang, X.; Fan, J. Acta Chim. Sinica 2019, 77, 434.
Fu, J.; Zhou, G. Y.; Hou, Z. Y.; Tian, H. C.; Xia, C. M.; Zhang, W.; Liu, J. T.; Wu, J. L.; Zhao, J. D.; Cang, X. L. Opt. Laser Technol. 2017, 91, 22.
doi: 10.1016/j.optlastec.2016.11.027
Liu, M. L.; Wu, Q.; Shi, H. F.; An, Z. F.; Huang, W. Acta Chim. Sinica 2018, 76, 246.
Cardenal, A. D.; Park, H. J.; Chalker, C. J.; Ortiz, K. G.; Powers, D. C. Chem. Commun. 2017, 53, 7377.
doi: 10.1039/C7CC02570J
Meng, S. Y.; Wang, M. M.; Lu, B. L.; Xue, Q. J.; Yang, Z. W. Acta Chim. Sinica 2019, 77, 1184.
doi: 10.7503/cjcu20180709
Wu, Z. M.; Shi, Y.; Li, C. Y.; Niu, D. Y.; Chu, Q.; Xiong, W.; Li, X. Y. Acta Chim. Sinica 2019, 77, 758.
Liu, R. X.; He, X. Y.; Niu, L. T.; Lv, B. L.; Yu, F.; Zhang, Z.; Yang, Z. W. Acta Chim. Sinica 2019, 77, 653.
Cao, L. Y.; Wang, T. T.; Wang, C. Chin. J. Chem. 2018, 36,
Zou, Z.; Li, S. Q.; He, D. G.; He, X. X.; Wang, K. M.; Li, L. L.; Yang, X.; Li, H. F. J. Mater. Chem. B 2017, 5, 2126.
doi: 10.1039/C6TB03379B
Couck, S.; Van Assche, T. R.; Liu, Y. Y.; Baron, G. V.; Van Der Voort, P.; Denayer, J. F. Langmuir 2015, 31, 5063.
doi: 10.1021/acs.langmuir.5b00655
Ponraj, Y. K.; Borah, B. J. Mol. Graph. Model. 2020, 97, 107574.
doi: 10.1016/j.jmgm.2020.107574
Tang, Y. N.; Wang, S.; Zhou, X.; Wu, Y.; Xian, S. K.; Li, Z. Chem. Eng. Sci. 2020, 213, 115355.
doi: 10.1016/j.ces.2019.115355
Fan, W. D.; Wang, X.; Zhang, X. R.; Liu, X. P.; Wang, Y. T.; Kang, Z. X.; Dai, F. N.; Xu, B.; Wang, R. M.; Sun, D. F. ACS Central. Sci. 2019, 5, 1261.
doi: 10.1021/acscentsci.9b00423
Chen, Y. W.; Qiao, Z. W.; Lv, D. F.; Wu, H. X.; Shi, R. F.; Xia, Q. B.; Wang, H. H.; Zhou, J.; Li, Z. Ind. Eng. Chem. Res. 2017, 56, 4488.
doi: 10.1021/acs.iecr.6b05010
Guo, W. J.; Yu, J.; Dai, Z.; Hou, W. Z. Acta Chim. Sinica 2019, 77, 1203.
doi: 10.11862/CJIC.2019.142
Wang, X.; Zhang, Y.; Chang, Z.; Huang, H.; Liu, X. T.; Xu, J. L.; Bu, X. H. Chin. J. Chem. 2019, 37, 871.
doi: 10.1002/cjoc.201900247
Qiao, W. Z.; Song, T. Q.; Zhao, B. Chin. J. Chem. 2019, 37, 474.
doi: 10.1002/cjoc.201800587
Chen, Z. Y.; Liu, J. W.; Cui, H.; Zhang, L.; Su, C. Y. Acta Chim. Sinica 2019, 77, 242.
doi: 10.3969/j.issn.0253-2409.2019.02.014
Zeng, J. Y.; Wang, X. S.; Zhang, X. Z.; Zhuo, R. X. Acta Chim. Sinica 2019, 77, 1156.
Liu, Z. L.; Li, W.; Liu, H.; Zhuang, X. D.; Li, S. Acta Chim. Sinica 2019, 77, 323.
doi: 10.11862/CJIC.2019.034
Bian, L.; Li, W.; Wei, Z. Z.; Liu, X. W.; Li, S. Acta Chim. Sinica 2018, 76, 303.
doi: 10.3866/PKU.WHXB201708302
Lan, Y. S.; Han, X. H.; Tong, M. M.; Huang, H. L.; Yang, Q. Y.; Liu, D. H.; Zhao, X.; Zhong, C. L. Nat. Commun. 2018, 9, 5274.
doi: 10.1038/s41467-018-07720-x
Qiao, Z. W.; Xu, Q. S.; Jiang, J. W. J. Mater. Chem. A 2018, 6, 18898.
doi: 10.1039/C8TA04939D
Wu, X. J.; Zheng, J.; Li, J.; Cai, W. Q. Acta Phys.-Chim. Sin. 2013, 29, 2207.
doi: 10.3866/PKU.WHXB201307191
Li, W.; Xia, X. X.; Cao, M.; Li, S. J. Mater. Chem. A 2019, 7, 7470.
doi: 10.1039/C8TA07909A
Shi, Z. N.; Yang, W. Y.; Deng, X. M.; Cai, C. Z.; Yan, Y. L.; Liang, H.; Liu, Z. L.; Qiao, Z. W. Mol. Syst. Des. Eng. 2020, DOI:10.1039/d0me00005a.
doi: 10.1039/d0me00005a
Moghadam, P. Z.; Rogge, S. M. J.; Li, A.; Chow, C.-M.; Wieme, J.; Moharrami, N.; Aragones-Anglada, M.; Conduit, G.; Gomez-Gualdron, D. A.; Van Speybroeck, V.; Fairen-Jimenez, D. Matter 2019, 1, 219.
doi: 10.1016/j.matt.2019.03.002
Fernandez, M.; Woo, T. K.; Wilmer, C. E.; Snurr, R. Q. J. Phys. Chem. C 2013, 117, 7681.
doi: 10.1021/jp4006422
Shah, M. S.; Tsapatsis, M.; Siepmann, J. I. Angew. Chem. 2016, 128, 6042.
doi: 10.1002/ange.201600612
Breiman, L. I.; Friedman, J. H.; Olshen, R. A.; Stone, C. J. Encycl. Ecol. 1984, 40, 358.
Breiman, L. Mach. Learn. 2001, 45, 5.
doi: 10.1023/A:1010933404324
Raccuglia, P.; Elbert, K. C.; Adler, P. D. F.; Falk, C.; Wenny, M. B.; Mollo, A.; Zeller, M.; Friedler, S. A.; Schrier, J.; Norquist, A. J. Nature 2016, 533, 73.
doi: 10.1038/nature17439
Zhang, W. G.; Goh, A. T. C. Geosci. Front. 2014, 7, 45.
Wu, X. J.; Xiang, S. C.; Su, J. Q.; Cai, W. Q. J. Phys. Chem. C 2019, 123, 8550.
Wang, X.; Zhang, X. R.; Zhang, K.; Wang, X. K.; Wang, Y. T.; Fan, W. D.; Dai, F. N. Inorg. Chem. Front. 2019, 6, 1152.
doi: 10.1039/C8QI01404C
Llewellyn, P. L.; Horcajada, P.; Maurin, G.; Devic, T.; Rosenbach, N.; Bourrelly, S.; Serre, C.; Vincent, D.; Loera-Serna, S.; Filinchuk, Y.; Férey, G. J. Am. Chem. Soc. 2009, 131, 13002.
doi: 10.1021/ja902740r
Wilmer, C. E.; Farha, O. K.; Yildirim, T.; Eryazici, I.; Krunglevi-ciute, V.; Sarjeant, A. A.; Snurr, R. Q.; Hupp, J. T. Energy Environ. Sci. 2013, 6, 1158.
doi: 10.1039/c3ee24506c
Wilmer, C. E.; Leaf, M.; Lee, C. Y.; Farha, O. K.; Hauser, B. G.; Hupp, J. T.; Snurr, R. Q. Nat. Chem. 2012, 4, 83.
doi: 10.1038/nchem.1192
Rappé, A. K.; Casewit, C. J.; Colwell, K. S.; III, W. A. G.; Skiff, W. M. J. Am. Chem. Soc. 1992, 114, 10024.
doi: 10.1021/ja00051a040
Martin, G. M.; Siepmann, J. I. J. Phys. Chem. B 1998, 102, 2569.
doi: 10.1021/jp972543+
Horn, H. W.; Swope, W. C.; Pitera, J. W.; Madura, J. D.; Head-Gordon, T. J. Chem. Phys. 2004, 120, 9665.
Kadantsev, E. S.; Boyd, P. G.; Daff, T. D.; Woo, T. K. J. Phys. Chem. Lett. 2013, 4, 3056.
doi: 10.1021/jz401479k
Willems, T. F.; Rycroft, C. H.; Kazi, M.; Meza, J. C.; Haranczyk, M. Microporous Mesoporous Mater. 2012, 149, 134.
doi: 10.1016/j.micromeso.2011.08.020
Dubbeldam, D.; Calero, S.; Ellis, D. E.; Snurr, R. Q. Mol. Simul. 2015, 42, 81.
Moghadam, P. Z.; Fairen-Jimenez, D.; Snurr, R. Q. J. Mater. Chem. A 2016, 4, 529.
doi: 10.1039/C5TA06472D
Jiali CHEN , Guoxiang ZHAO , Yayu YAN , Wanting XIA , Qiaohong LI , Jian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408
Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060
Feng Zheng , Ruxun Yuan , Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027
Jia Zhou , Huaying Zhong . Experimental Design of Computational Materials Science Combined with Machine Learning. University Chemistry, 2025, 40(3): 171-177. doi: 10.12461/PKU.DXHX202406004
Xinghai Li , Zhisen Wu , Lijing Zhang , Shengyang Tao . Machine Learning Enables the Prediction of Amide Bond Synthesis Based on Small Datasets. Acta Physico-Chimica Sinica, 2025, 41(2): 2309041-0. doi: 10.3866/PKU.WHXB202309041
Ping LI , Geng TAN , Xin HUANG , Fuxing SUN , Jiangtao JIA , Guangshan ZHU , Jia LIU , Jiyang LI . Green synthesis of metal-organic frameworks with open metal sites for efficient ammonia capture. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2063-2068. doi: 10.11862/CJIC.20250020
Jia Zhou . Design and Practice of a Comprehensive Computational Chemistry Experiment Based on High-Throughput Computation and Machine Learning. University Chemistry, 2025, 40(9): 69-75. doi: 10.12461/PKU.DXHX202411067
Xiaochen Zhang , Fei Yu , Jie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026
Ying Liang , Yuheng Deng , Shilv Yu , Jiahao Cheng , Jiawei Song , Jun Yao , Yichen Yang , Wanlei Zhang , Wenjing Zhou , Xin Zhang , Wenjian Shen , Guijie Liang , Bin Li , Yong Peng , Run Hu , Wangnan Li . Machine learning-guided antireflection coatings architectures and interface modification for synergistically optimizing efficient and stable perovskite solar cells. Acta Physico-Chimica Sinica, 2025, 41(9): 100098-0. doi: 10.1016/j.actphy.2025.100098
Ruige ZHANG , Zhe ZHANG , He ZHENG , Zhan SHI . Recent advances of metal-organic frameworks for alkaline electrocatalytic oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2011-2028. doi: 10.11862/CJIC.20250185
Xiaogang YANG , Xinya ZHANG , Jing LI , Huilin WANG , Min LI , Xiaotian WEI , Xinci WU , Lufang MA . Synthesis, structure, and photoelectric properties of Zinc(Ⅱ)-triphenylamine based metal-organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2078-2086. doi: 10.11862/CJIC.20250167
Yi DING , Peiyu LIAO , Jianhua JIA , Mingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393
Hong CAI , Jiewen WU , Jingyun LI , Lixian CHEN , Siqi XIAO , Dan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382
Jianding LI , Junyang FENG , Huimin REN , Gang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464
Bizhu Shao , Huijun Dong , Yunnan Gong , Jianhua Mei , Fengshi Cai , Jinbiao Liu , Dichang Zhong , Tongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026
Hui-Ying Chen , Hao-Lin Zhu , Pei-Qin Liao , Xiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
Jianqiang Zheng , Yongbin Huang , Wencan Ming , Yingju Liu . Intelligent Reaction Optimization: Synthesis of Acetylsalicylic Acid Driven by Deep Learning and Optimization Algorithms. University Chemistry, 2025, 40(9): 87-98. doi: 10.12461/PKU.DXHX202411062
Weigang Zhu , Jianfeng Wang , Qiang Qi , Jing Li , Zhicheng Zhang , Xi Yu . Curriculum Development for Cheminformatics and AI-Driven Chemistry Theory toward an Intelligent Era. University Chemistry, 2025, 40(9): 34-42. doi: 10.12461/PKU.DXHX202412002
Xueqi Yang , Juntao Zhao , Jiawei Ye , Desen Zhou , Tingmin Di , Jun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-0. doi: 10.1016/j.actphy.2025.100074
(a) SC1/(C2+C3)-NC1; (b) NC1-LCD; (c) SC1/(C2+C3)-LCD; (d) SC2/(C1+C3)-NC2; (e) NC2-LCD; (f) SC2/(C1+C3)-LCD; (g) NC1-SC1/(C2+C3), LCD; (h) NC2-SC1/(C2+C3), LCD. The color represents the value of TSN. Each figure contains the data of 31399 hMOFs
The color represents the value of the TSN. The figure contains the data of 31399 hMOFs
(a) RF, (b) BPNN, (c) DT, (d) SVM. The color represents the number of MOFs
(a) Relative importance of the six descriptors for NC1, NC2, NC3. The color from yellow to red represents the relative importance; (b) Design paths for optimal MOFs. The optimal and suboptimal routes are highlighted in red and blue, respectively