Citation: Fan Qin, Liang Hongtao, Xu Xianqi, Lv Songtai, Liang Zun, Yang Yang. Study of the Dielectric Property of Monolayer Confined Water Using A Polarizable Model[J]. Acta Chimica Sinica, ;2020, 78(6): 547-556. doi: 10.6023/A20030054 shu

Study of the Dielectric Property of Monolayer Confined Water Using A Polarizable Model

  • Corresponding author: Yang Yang, yyang@phy.ecnu.edu.cn
  • Received Date: 4 March 2020
    Available Online: 23 May 2020

    Fund Project: the Fundamental Research Funds for the Central Universities and East China Normal University Multifunctional Platform for Innovation 001the National Natural Science Foundation of China 11874147Project supported by the National Natural Science Foundation of China (Nos. 11504110, 11874147), the Fundamental Research Funds for the Central Universities and East China Normal University Multifunctional Platform for Innovation (001)the National Natural Science Foundation of China 11504110

Figures(7)

  • The direct measurement of the dielectric properties of the confined water is exceedingly challenging, result in the lack of a quantitative understanding of its critical roles in electrochemistry, interfacial reactivity and transport thermodynamics. In this paper, we employ the equilibrium molecular dynamics simulation and the linear response theory-based analytical expressions for the local permittivity tensor, to calculate the static and dynamic dielectric response properties of the monolayer ice and water confined in the 0.65 nm size hydrophobic slab pore under 5×108 Pa lateral pressure and different temperatures. We carry out a detailed comparative study on the performance of predicting the confined structure and dielectric response properties between two well known water molecule models, i.e., constant dipole moment SPC/E model and polarizable SWM4-NDP water model. We have analyzed the probability distributions of the instantaneous SWM4-NDP water molecular dipole moments and calculated the static structure factor, radial dipole-dipole correlation function, static dielectric tensor, total dipole autocorrelation function and Debye relaxation time of each simulation system. For the first time, we found the novel variation of the water molecular polarities, in the monolayer confined liquid and solid phase of water, due to the extreme confinement condition. The performance in describing the structural properties are found comparable between the two water models, and the enhancement of the confinement weakens the advantage of the SWM4-NDP model in predicting the static dielectric property. However, in the prediction of the dynamic properties such as dielectric relaxation time, SWM4-NDP water model is superior to the SPC/E model. Therefore, we suggest that using SWM4-NDP model in the future investigation of the structural phase transition kinetics, ionic transportation and solvation kinetics would be the better choice. The current achievement of the fundamental insight and computational data could potentially facilitate the theoretical advancements in designing new devices of energy storage, sensor, and medicine delivery based on confined water systems.
  • 加载中
    1. [1]

      Eijkel, J. C. T.; Berg, A. Microfluid Nanofluid 2005, 1, 249.  doi: 10.1007/s10404-004-0012-9

    2. [2]

      Granick, S. Science 1991, 253, 1374.  doi: 10.1126/science.253.5026.1374

    3. [3]

      Israelachvili, J. N. Intermolecular and Surface Forces, 3rd ed., Academic Press, Burlington, 2011.

    4. [4]

      Leikin, S.; Parsegian, V. A.; Rau, D. C.; Rand, R. P. Annu. Rev. Phys. Chem. 1993, 44, 369.  doi: 10.1146/annurev.pc.44.100193.002101

    5. [5]

      Honig, B.; Nicholls, A. Science 1995, 268, 1144.  doi: 10.1126/science.7761829

    6. [6]

      Cohen-Tanugi, D.; Grossman, J. Nano Lett. 2012, 12, 3602.  doi: 10.1021/nl3012853

    7. [7]

      Szymczyk, A.; Fatin-Rouge, N.; Fievet, P. J. Colloid Interface Sci. 2007, 309, 245.  doi: 10.1016/j.jcis.2007.02.005

    8. [8]

      Lin, Y.; Shiomi, J.; Maruyama, S.; Amberg, G. Phys. Rev. B 2009, 80, 045419.  doi: 10.1103/PhysRevB.80.045419

    9. [9]

      Mikami, F.; Matsuda, K.; Kataura, H.; Maniwa, Y. ACS Nano 2009, 3, 1279.  doi: 10.1021/nn900221t

    10. [10]

      Toney, M. F.; Howard, J. N.; Richer, J.; Borges, G. L.; Gordon, J. G.; Melroy, O. R.; Wiesler, D. G.; Yee, D.; Sorensen, L. B. Nature 1994, 368, 444.  doi: 10.1038/368444a0

    11. [11]

      Ballenegger, V.; Hansen, J. P. J. Chem. Phys. 2005, 122, 114711.  doi: 10.1063/1.1845431

    12. [12]

      Bonthuis, D. J.; Gekle, S.; Netz, R. R. Phys. Rev. Lett. 2011, 107, 166102.  doi: 10.1103/PhysRevLett.107.166102

    13. [13]

      Zhang, C.; Gygi, F.; Galli, G. J. Phys. Chem. Lett. 2013, 4, 2477.  doi: 10.1021/jz401108n

    14. [14]

      Schlaich, A.; Knapp, E. W.; Netz, R. R. Phys. Rev. Lett. 2016, 117, 048001.  doi: 10.1103/PhysRevLett.117.048001

    15. [15]

      Fumagalli, L.; Esfandiar, A.; Fabregas, R.; Hu, S.; Ares, P.; Janardanan, Q. Y.; Radha, B.; Taniguchi, T.; Watanabe, K.; Gomila, G.; Novoselov, K. S.; Geim, A. K. Science 2018, 360, 1339.  doi: 10.1126/science.aat4191

    16. [16]

      Algara-Siller, G.; Lehtinen, O.; Wang, F. C.; Nair, R.; Kaiser, U.; Wu, H.; Geim, A.; Grigorieva, I. Nature 2015, 519, 443.  doi: 10.1038/nature14295

    17. [17]

      Du, H.; Liang, H. T.; Yang, Y. Acta Chim. Sinica 2018, 76, 483 (in Chinese).
       

    18. [18]

      Liang, Z.; Du, H.; Liang, H. T.; Yang, Y. Mol. Phys. 2019, 117, 2881.  doi: 10.1080/00268976.2019.1593532

    19. [19]

      Vega, C.; Abascal, J. L. F. Phys. Chem. Chem. Phys. 2011, 13, 19663.  doi: 10.1039/c1cp22168j

    20. [20]

      Berendsen, H. J. C.; Grigera, J. R.; Straatsma, T. P. J. Phys. Chem. 1987, 91, 6269.  doi: 10.1021/j100308a038

    21. [21]

      Lamoureux, G.; Harder, E.; Vorobyov, I. V.; Roux, B.; MacKerell, A. D. Chem. Phys. Lett. 2006, 418, 245.  doi: 10.1016/j.cplett.2005.10.135

    22. [22]

      Lybrand, T. P.; Kollman, P. A. J. Chem. Phys. 1985, 83, 2923.  doi: 10.1063/1.449246

    23. [23]

      Stuart, S. J.; Berne, B. J. J. Chem. Phys. 1996, 100, 11934.  doi: 10.1021/jp961076d

    24. [24]

      Dequidt, A.; Devèmy, J.; Pádua, A. A. H. J. Chem. Inf. Model. 2015, 56, 260.

    25. [25]

      Shepard, A. C.; Beers, Y.; Klein, G. P.; Rothman, L. S. J. Chem. Phys. 1973, 59, 2254.  doi: 10.1063/1.1680328

    26. [26]

      Gubskaya, A. V.; Kusalik, P. G. J. Chem. Phys. 2002, 117, 5290.  doi: 10.1063/1.1501122

    27. [27]

      Fernandez, D. P.; Mulev, Y.; Goodwin, A. R. H.; Sengers, J. M. H. L. J. Phys. Chem. Ref. Data 1995, 24, 33.  doi: 10.1063/1.555977

    28. [28]

      Jones, A. P.; Crain, J.; Sokhan, V. P.; Whitfield, T. W.; Martyna, G. J. Phys. Rev. B 2013, 87, 144103.  doi: 10.1103/PhysRevB.87.144103

    29. [29]

      Kimmel, G. A.; Matthiesen, J.; Baer, M.; Mundy, C. J.; Petrik, N. G.; Smith, R. S.; Dohnálek, Z.; Kay, B. D. J. Am. Chem. Soc. 2009, 131, 12838.  doi: 10.1021/ja904708f

    30. [30]

      Giovambattista, N.; Rossky, P. J.; Debenedetti, P. G. Phys. Rev. Lett. 2009, 102, 050603.  doi: 10.1103/PhysRevLett.102.050603

    31. [31]

      Magda, J. J.; Tirell, M.; Davis, H. T. J. Chem. Phys. 1986, 84, 2901.

    32. [32]

      Werder, T.; Walther, J. H.; Jaffe, R. L.; Halicioglu, T.; Koumoutsakos, P. J. Phys. Chem. B 2003, 107, 1345.  doi: 10.1021/jp0268112

    33. [33]

      Hockney, R. W.; Eastwood, J. W. Computer Simulation Using Particles, CRC Press, 1988, p. 55.

    34. [34]

      Yeh, I. C.; Berkowitz, M. J. Chem. Phys. 1999, 111, 3155.
       

    35. [35]

      Plimpton, S. J. Comput. Phys. 1995, 117, 1.  doi: 10.1006/jcph.1995.1039

    36. [36]

      Ryckaert, J. P.; Ciccotti, G.; Berendsen, H. J. J. Comput. Phys. 1997, 23, 327.

    37. [37]

      Jiang, W.; Hardy, D. J.; Phillips, J. C.; MacKerell, A. D.; Schulten, K.; Roux, B. J. Phys. Chem. Lett. 2011, 2, 87.  doi: 10.1021/jz101461d

    38. [38]

      Wu, A. K.; Lin, S. C.; Karma, A. Phys. Rev. B 2016, 93, 054114.  doi: 10.1103/PhysRevB.93.054114

    39. [39]

      Luo, C. F.; Fa, W.; Zhou, J.; Dong, J. M.; Zeng, X. C. Nano Lett. 2008, 8, 2607.  doi: 10.1021/nl072642r

    40. [40]

      Wang, X. H.; Feng, L.; Cao, Z. X. Acta Chim. Sinica 2014, 72, 487 (in Chinese).
       

    41. [41]

      Zhou, W.; Yin, K. B.; Wang, C. H.; Zhang, Y. Y.; Xu, T.; Borisevich, A.; Sun, L. T.; Idrobo, J. C.; Chisholm, M. F.; Pantelides, S. T.; Klie, R. F.; Lupini, A. R. Nature 2015, 528, E1.  doi: 10.1038/nature16145

    42. [42]

      Wang, F. C.; Wu, H. A.; Geim, A. K. Nature 2015, 528, E3.

    43. [43]

      Chen, J.; Schusteritsch, G.; Pickard, C. J.; Salzmann, C. G.; Michaelides, A. Phys. Rev. Lett. 2016, 116, 025501.  doi: 10.1103/PhysRevLett.116.025501

    44. [44]

      Petrenko, V. F.; Whitworth, R. W. Physics of Ice, Oxford University Press, Oxford, 1999.

    45. [45]

      Hill, N. E. Trans. Faraday Soc. 1963, 59, 344.  doi: 10.1039/tf9635900344

    46. [46]

      Kindt, J. T.; Schmuttenmaer, C. A. J. Phys. Chem. 1996, 100, 10373.  doi: 10.1021/jp960141g

    47. [47]

      Yang, P. L.; Wang, Z. X.; Liang, Z.; Liang, H. T.; Yang, Y. Acta Chim. Sinica 2019, 77, 1045 (in Chinese).  doi: 10.3866/PKU.WHXB201905058
       

  • 加载中
    1. [1]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    2. [2]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    3. [3]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    4. [4]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    5. [5]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    6. [6]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    7. [7]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

Metrics
  • PDF Downloads(8)
  • Abstract views(1211)
  • HTML views(183)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return