Citation: Jia Xiaoyan, Li Zhenhuan. Synthesis of N-Carboxy Alanine Anhydride from Alanine and Dimethyl Carbonate over NaZnPO4 in One-pot[J]. Acta Chimica Sinica, ;2020, 78(6): 540-546. doi: 10.6023/A20020024 shu

Synthesis of N-Carboxy Alanine Anhydride from Alanine and Dimethyl Carbonate over NaZnPO4 in One-pot

  • Corresponding author: Li Zhenhuan, lizhenhuan@tiangong.edu.cn
  • Received Date: 7 February 2020
    Available Online: 13 May 2020

    Fund Project: the National Natural Science Foundation of China 21376177Project supported by the National Natural Science Foundation of China (Nos. 21676202, 21376177)the National Natural Science Foundation of China 21676202

Figures(11)

  • In this paper, the environmentally friendly synthesis of N-carboxy alanine anhydride (Ala-NCA) from alanine and dimethyl carbonate (DMC) over NaZnPO4 was carried out in one-pot, and the NaZnPO4 catalyst with the acid-base double active sites was prepared by the solid phase synthesis method. The X-ray diffraction spectrometer (XRD) was used to characterize the structure of NaZnPO4, and the reaction products were analyzed by the high performance liquid chromatography (HPLC) with evaporative light scattering detector (ELSD). The GC-MS characterized result of obtained Ala-NCA was extremely consistent with that of the standard sample, which indicated that Ala-NCA was synthesized successfully. When the reaction was carried out at 150℃ for 8 h, the maximum 46.84% yield of Ala-NCA can be obtained in DMF solvent. As the reaction temperature increased to 160℃, Ala-NCA yield significantly declined because of the instability of Ala-NCA at higher temperature. However, there was no Ala-NCA formation without catalyst existence because DMC is not easy to undergo carboxymethylation with amino acids. NaZnPO4 could be recycled, but Ala-NCA yield declined to 38.62% after the fifth cycle. The reasons for that were attributed to the catalyst surface area reduction and the active site loss of Na-O and Zn2+. The reaction between DMC and amino acids over NaZnPO4 were characterized by TG-MS-IR, and the possible catalytic mechanism was provided. Namely, Zn2+ and Na-O in NaZnPO4 perform an effective acid-base synergistic catalysis, on the one hand the basic Na-O active sites play an key role on amino group deprotonation, which promotes the carboxymethylation of amino acids with DMC, on the other hand the acid active sites of Zn2+ can well catalyze the cyclization of intermediate into Ala-NCA. In this cyclization process, NaZnPO4 also can transfer the trapped protons to carboxymethylation intermediate to facile the formation of target compounds.
  • 加载中
    1. [1]

      (a) Deming, T. J. Nature 1997, 390, 386; (b) Liang, J.; Zhi, X.; Zhou, Q.; Yang, J. Polymer 2019, 165, 830; (c) Nie, Y.; Zhi, X.; Du, H.; Yang, J. Molecules 2018, 23, 760; (d) Lu, H.; Cheng, J. J. Am. Chem. Soc. 2007, 129, 14114; (e) Aliferis, T.; Iatrou, H.; Hadjichristidis, N. Biomacromolecules 2004, 5, 1653.

    2. [2]

      (a) Deming, T. J. Adv. Polym. Sci. 2006, 202, 1; (b) Cheng, R. P.; Fisher, S. L.; Imperiali, B. J. Am. Chem. Soc. 1996, 118, 11349.

    3. [3]

      Maji, S. K.; Banerjee, R.; Velmurugan, D.; Razak, A.; Fun, H. K.; Banerjee, A. J. Org. Chem. 2002, 67, 633.  doi: 10.1021/jo010314k

    4. [4]

      Frank, A. O.; Vangamudi, B.; Feldkamp, M. D. J. Med. Chem. 2014, 57, 2455.  doi: 10.1021/jm401730y

    5. [5]

      (a) Cha, J. N.; Stucky, G. D.; Morse, D. E.; Deming, T. J. Nature 2000, 403, 289; (b) Deming, T. J. Adv. Drug. Delive. Rev. 2002, 54, 1145; (c) Dos Santos, S.; Chandravarkar, A.; Mandal, B.; Mimna, R.; Murat, K.; Saucede, L.; Tella, P.; Tuchscherer, G.; Mutter, M. S. J. Am. Chem. Soc. 2005, 127, 11888; (d) Deng, C.; Wu, J.; Cheng, R.; Meng, F.; Klok, H.; Zhong, Z. Prog. Polym. Sci. 2014, 39, 330; (e) Lu, H.; Wang, J.; Song, Z.; Yin, L.; Zhang, Y.; Tang, H.; Tu, C.; Lin, Y.; Cheng, J. Chem. Commun. 2014, 50, 139.

    6. [6]

      Leuchs, H. J. Ber. Dtsch. Chem. Ges. 1906, 39, 857.  doi: 10.1002/cber.190603901133

    7. [7]

      (a) Kricheldorf, H. R.; Lossow, C. V.; Schwarz, G. Macromol. Chem. Phys. 2005, 206, 282; (b) Ohkawa, K.; Nagai, T.; Nishida, A.; Yamomoto, H. J. Adhes. 2009, 85, 770.

    8. [8]

      (a) Vayaboury, W.; Giani, O.; Collet, H.; Commeyras, A.; Schué, F. Amino Acids 2004, 27, 161; (b) Collet, H.; Bied, C.; Mion, L.; Taillades, J.; Commeyras, A. Tetrahedron Lett. 1996, 37, 9043.

    9. [9]

      (a) Tundo, P.; Selva, M. J. Acc. Chem. Res. 2002, 35, 706; (b) Tundo, P.; Musolino, M.; Aricò, F. Green Chem. 2018, 20, 28; (c) Anastas, P. T.; Lankey, R. L. Green Chem. 2000, 2, 289; (d) Li, Z.; Cheng, B.; Su, K.; Gu, Y.; Xi, P.; Guo, M. J. Mol. Catal. A 2008, 289, 100.

    10. [10]

      Zhang, Z.; Su, K.; Li, Z. Org. Lett. 2019, 21, 749.  doi: 10.1021/acs.orglett.8b03984

    11. [11]

      Nenoff, T. M.; Harrison, W. T. A.; Gier, T. E.; Stucky, G. S. J. Am. Chem. Soc. 1991, 113, 378.  doi: 10.1021/ja00001a065

    12. [12]

      Tundo, P.; Arico, P.; Rosamilia, A. E.; Rigo, M.; Maranzana, A.; Tonachini, G. Pure Appl. Chem. 2009, 81, 1971.  doi: 10.1351/PAC-CON-08-12-02

    13. [13]

      Wang, J. X. M.S. Thesis, North University of China, Taiyuan, 2005 (in Chinese).

  • 加载中
    1. [1]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    2. [2]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    3. [3]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    4. [4]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    5. [5]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    6. [6]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    7. [7]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    8. [8]

      Tao Cao Fang Fang Nianguang Li Yinan Zhang Qichen Zhan . Green Synthesis of p-Hydroxybenzonitrile Catalyzed by Spinach Extracts under Red-Light Irradiation: Research and Exploration of Innovative Experiments for Pharmacy Undergraduates. University Chemistry, 2024, 39(5): 63-69. doi: 10.3866/PKU.DXHX202309098

    9. [9]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    10. [10]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    11. [11]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    12. [12]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    13. [13]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    14. [14]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    15. [15]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    16. [16]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    17. [17]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    18. [18]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    19. [19]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    20. [20]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

Metrics
  • PDF Downloads(9)
  • Abstract views(1087)
  • HTML views(221)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return