Citation: Zhang Ronghua, Xu Bing, Zhang Zhanming, Zhang Junliang. Ming-Phos/Copper(I)-Catalyzed Asymmetric[3+2] Cycloaddition of Azomethine Ylides with Nitroalkenes[J]. Acta Chimica Sinica, ;2020, 78(3): 245-249. doi: 10.6023/A20010019 shu

Ming-Phos/Copper(I)-Catalyzed Asymmetric[3+2] Cycloaddition of Azomethine Ylides with Nitroalkenes

  • Corresponding author: Zhang Zhanming, zhangzhanming12@163.com Zhang Junliang, jlzhang@chem.ecnu.edu.cn; junliangzhang@fudan.edu.cn
  • Received Date: 21 January 2020
    Available Online: 9 March 2020

    Fund Project: the Program of Eastern Scholar at Shanghai Institutions of Higher Learning and the China Postdoctoral Science Foundation 2019M650071the National Natural Science Foundation of China 21801078the Program of Eastern Scholar at Shanghai Institutions of Higher Learning and the China Postdoctoral Science Foundation 2019M661418the National Natural Science Foundation of China 21425205973 Program 2015CB856600Project supported by the National Natural Science Foundation of China (Nos. 21425205, 21672067, 21801078), 973 Program (No. 2015CB856600), and the Program of Eastern Scholar at Shanghai Institutions of Higher Learning and the China Postdoctoral Science Foundation (Nos. 2019M650071, 2019M661418)the National Natural Science Foundation of China 21672067

Figures(1)

  • Optically pure pyrrolidine ring systems are core structural motifs found in a range of bioactive compounds, natural products, pharmaceuticals and catalysts. The synthesis of optically pure pyrrolidine ring systems is no longer mysterious as a great number of studies concerning the catalytic asymmetric 1, 3-dipolar cycloaddition of iminoesters have been reported. Overall, the transition-metal-catalyzed asymmetric 1, 3-dipolar cycloaddition of iminoesters with electron-deficient alkenes is one of the most powerful and straightforward synthetic tools for the optically pure pyrrolidines. However, high diastereo-and enantioselectivities are requested simultaneously during the synthesis of chiral substituted pyrrolidine and it still remains a big challenge to develop an efficient way to achieve both of them. Recently, we developed a novel chiral sulfinamide mono-phosphine (Ming-Phos) which performed well in copper-catalyzed intermolecular cycloaddition of iminoesters with β-trifluoromethyl β, β-disubstituted enones or α-trifluoromethyl α, β-unsaturated esters. Encouraged by the satisfying results, herein we report the Ming-Phos/Cu-catalyzed asymmetric intermolecular[3+2] cycloaddition of azomethine ylides with nitroalkenes. To our delight, a new Ming-Phos M3 bearing a trifluoromethyl showed good performance in this type of inter-molecular cycloaddition with high diastereo-and enantioselectivities (up to 13:1 dr, 98% ee and 95% yield). High efficiency, high diastereo-and enantioselectivity, a novel ligand, an inexpensive copper catalyst, and good functional group tolerance make it worth to be considered as an efficient, reliable and atom-economic strategy for the synthesis of optically pyrrolidines. The general procedure is as following:the solution of M3 (5.5 mol%) and Cu(CH3CN)4BF4 (5 mol%) in methyl tert-butyl ether (MTBE, 6 mL) was stirred at room temperature for 2 h. After the reaction temperature was dropped to -30℃, azomethine ylides 2 (0.6 mmol), Cs2CO3 (0.15 mmol) and nitroalkene 1 (0.3 mmol) were added sequentially. After the nitroalkene 1 was consumed completely, the solvent was removed under reduced pressure. The crude product was analyzed with 1H NMR to determine the diastereomeric ratio. Then the crude product was then purified by flash column chromatography on silica gel to afford the desired product.
  • 加载中
    1. [1]

      For recent reviews and selected examples on the application of pyrrolidines in the natural products and biologically molecules, see: (a) Pyne, S. G.; Davis, A. S.; Gates, N. J.; Hartley, J. P.; Lindsay, K. B.; Machan, T.; Tang, M. Synlett 2004, 2670. (b) Michael, J. P. Nat. Prod. Rep. 2008, 25, 139. (c) Enders, D.; Thiebes, C. Pure Appl. Chem. 2001, 73, 573. (d) Narayan, R.; Potowski, M.; Jia, Z. J.; Antonchick, A. P.; Waldmann, H. Acc. Chem. Res. 2014, 47, 1296. (e) Kumar, I. RSC Adv. 2014, 4, 16397. (f) Randjelovic, J.; Simic, M.; Tasic, G.; Husinec, S.; Savic, V. Curr. Org. Chem. 2014, 18, 1073. (g) Álvarez-Corral, M.; Muñoz-Dorado, M.; Rodriguez-Garcı́a, I. Chem. Rev. 2008, 108, 3174, and references therein.

    2. [2]

    3. [3]

      For recent reviews about 1, 3-dipolar cycloadditions of iminoesters, see: (a) Nair, V.; Suja, T. D. Tetrahedron 2007, 63, 12247. (b) Stanley, L. M.; Sibi, M. P. Chem. Rev. 2008, 108, 2887. (c) Álvarez-Corral, M.; Muñoz-Dorado, M.; Rodríguez-García, I. Chem. Rev. 2008, 108, 3174. (d) Naodovic, M.; Yamamoto, H. Chem. Rev. 2008, 108, 3132. (e) Engels, B.; Christl, M. Angew. Chem., Int. Ed. 2009, 48, 7968. (f) Adrio, J.; Carretero, J. C. Chem. Commun. 2011, 47, 6784. (g) Moyano, A.; Rios, R. Chem. Rev. 2011, 111, 4703. (h) Albrecht, Ł.; Jiang, H.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2011, 50, 8492. (i) Maroto, E. E.; Izquierdo, M.; Reboredo, S.; Marco-Martínez, J.; Filippone, S.; Martín, N. Acc. Chem. Res. 2014, 47, 2660. (j) Hashimoto, T.; Maruoka, K. Chem. Rev. 2015, 115, 5366. (k) Taggi, A. E.; Hafez, A. M.; Lectka, T. Acc. Chem. Res. 2003, 36, 10. (l) Dickstein, J. S.; Kozlowski, M. C. Chem. Soc. Rev. 2008, 37, 1166. (m) Kobayashi, S.; Mori, Y.; Fossey, J. S.; Salter, M. M. Chem. Rev. 2011, 111, 2626. (n) Fang, X.; Wang, C.-J. Org. Biomol. Chem. 2018, 16, 2591.

    4. [4]

    5. [5]

      Allway, P.; Grigg, R. Tetrahedron Lett. 1991, 32, 5817.  doi: 10.1016/S0040-4039(00)93563-9

    6. [6]

      Longmire, J. M.; Wang, B.; Zhang, X. J. Am. Chem. Soc. 2002, 124, 13400.  doi: 10.1021/ja025969x

    7. [7]

      (a) Yan, X.-X.; Peng, Q.; Zhang, Y.; Zhang, K.; Hong, W.; Hou, X.-L.; Wu, Y.-D. Angew. Chem., Int. Ed. 2006, 45, 1979. (b) Arai, T.; Yokoyama, N.; Mishiro, A.; Sato, H. Angew. Chem., Int. Ed. 2010, 49, 7895. (c) Bai, X.-F.; Song, T.; Xu, Z.; Xia, C.-G.; Huang, W.-S.; Xu, L.-W. Angew. Chem., Int. Ed. 2015, 54, 5255. (d) Feng, B.; Chen, J.-R.; Yang, Y.-F.; Lu, B.; Xiao, W. J. Chem. Eur. J. 2018, 24, 1714.

    8. [8]

      For applications of Ming-Phos in asymmetric catalysis, see: (a) Zhang, Z.-M.; Chen, P.; Li, W.; Niu, Y.; Zhao, X. L.; Zhang, J. Angew. Chem., Int. Ed. 2014, 53, 4350. (b) Chen, M.; Zhang, Z.-M.; Yu, Z.; Qiu, H.; Ma, B.; Wu, H.-H.; Zhang, J. ACS Catal. 2015, 5, 7488. (c) Zhang, Z.-M.; Xu, B.; Xu, S.; Wu, H.-H.; Zhang, J. Angew. Chem., Int. Ed. 2016, 55, 6324. (d) Xu, B.; Zhang, Z.-M.; Xu, S.; Liu, B.; Xiao, Y.; Zhang, J. ACS Catal. 2017, 7, 210. (e) Wang, Y.; Zhang, Z.-M.; Liu, F.; He, Y.; Zhang, J. Org. Lett. 2018, 20, 6403. (f) Di, X.; Wang, Y.; Wu, L.; Zhang, Z.-M.; Dai, Q.; Li, W.; Zhang, J. Org. Lett. 2019, 21, 3018. (g) Wu, Y.; Xu, B.; Liu, B.; Zhang, Z. M.; Liu, Y. Org. Biomol. Chem. 2019, 17, 1395. (h) Zhou, L.; Li, S.; Xu, B.; Ji, D.; Wu, L.; Liu, Y.; Zhang Z.-M.; Zhang, J. Angew. Chem., Int. Ed. 2020, 59, 2769. (i) Zhou, L.; Xu, B.; Ji, D.; Zhang, Z.-M.; Zhang, J. Chin. J. Chem. DOI: 10.1002/cjoc.202000034.

  • 加载中
    1. [1]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    2. [2]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    3. [3]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    4. [4]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    5. [5]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    6. [6]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    7. [7]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    8. [8]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    9. [9]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    10. [10]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    11. [11]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    12. [12]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    13. [13]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    14. [14]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    15. [15]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    16. [16]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    17. [17]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    18. [18]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    19. [19]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    20. [20]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

Metrics
  • PDF Downloads(21)
  • Abstract views(2386)
  • HTML views(376)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return