Citation: Qie Shuyan, Hao Ying, Liu Zongjian, Wang Jin, Xi Jianing. Advances in Cyclodextrin Polymers and Their Applications in Biomedicine[J]. Acta Chimica Sinica, ;2020, 78(3): 232-244. doi: 10.6023/A20010006 shu

Advances in Cyclodextrin Polymers and Their Applications in Biomedicine

  • Corresponding author: Wang Jin, jwang2014@sinano.ac.cn Xi Jianing, xijn888@sina.com
  • These authors contributed equally to this work
  • Received Date: 8 January 2020
    Available Online: 26 February 2020

    Fund Project: the National Natural Science Foundation of China 91963124Project supported by the National Natural Science Foundation of China (Nos. 91963124, 51773225, 51903246)the National Natural Science Foundation of China 51773225the National Natural Science Foundation of China 51903246

Figures(16)

  • Cyclodextrins (CDs) are a family of macrocyclic oligosaccharides composed of α-1, 4-linked D-glucopyranose units. The most commonly used CDs are α-, β-, and γ-CD, which consist of 6, 7, and 8 D-glucose units, respectively. They possess a relative hydrophobic inner cavity and a hydrophilic outer surface and can form inclusion complexes with various small molecules, metal ions and polymers, tailoring the physicochemical property of the guests, and thus have been widely used in the fields of pharmacy, food, chemistry, chromatography, catalysis, biotechnology, agriculture, cosmetics, hygiene, medicine, textiles and the environment, etc. However, it is difficult to manipulate the native CDs in some specific applications, they are crystallized solid and soluble in water but insoluble in most organic solvents. CD polymers (CDPs), such as crosslinked CDs or CD based hydrogels with various crosslinkers by chemical reactions, and CD based supramolecular polymers formed by physical interactions, can achieve the integration effect and synergy effect of CDs, crosslinkers and guest polymers, not only possessing the inclusion capacity of CDs, but also endowing CDs with other properties introduced by crosslinkers. The CDPs can be easily manipulated and they exhibit unique features that native CDs are lack of. Hence, the design, synthesis and applications of CDPs have attracted broad interests in recent years. This review focuses on the recent progress in CDPs, and different types of CDPs are identified and classified based on the structures and functions, namely CD based polyrotaxane, grafted CDs, crosslinked CDs and linear CDs, etc. Besides, the synthetic methodologies of CDPs are highlighted. Particular attention is paid to the breakthrough on the CDPs in the past five years, and their applications in biomedicine, such as drug delivery, gene delivery, target delivery, controlled release and cell imaging are discussed in detail. The typical applications in other fields such as absorption, environment remediation, thermal insulation, catalysis and slid-ring gels are also discussed in brief. Finally, the review provides brief summary and prospect of CDPs.
  • 加载中
    1. [1]

      Crini, G. Chem. Rev. 2014, 114, 10940.  doi: 10.1021/cr500081p

    2. [2]

      Yu, G.; Jie, K.; Huang, F. Chem. Rev. 2015, 115, 7240.  doi: 10.1002/chin.201539262

    3. [3]

      Chen, Y.; Gui, X.; Duan, Z.; Zhu, L.; Xiang, Y.; Xia, D. Chin. J. Org. Chem. 2019, 39, 1284 (in Chinese).
       

    4. [4]

      Shao, W.; Liu, X.; Wang, T.; Hu, X. Chin. J. Org. Chem. 2018, 38, 1107 (in Chinese).  doi: 10.6023/cjoc201711027

    5. [5]

      Liu, A.; Xiong, C.; Ma, X.; Ma, W.; Sun, R. Chin. J. Chem. 2019, 37, 793.  doi: 10.1002/cjoc.201900106

    6. [6]

      Chen, X.; Chen, Y.; Liu, Y. Chin. J. Chem. 2018, 36, 526.  doi: 10.1002/cjoc.201800063

    7. [7]

      Zhang, Y.; Chen, Y.; Li, J.; Liang, L.; Liu, Y. Acta Chim. Sinica 2018, 76, 622.
       

    8. [8]

      Ren, K.; He, J.; Zhang, M.; Wu, Y.; Ni, P. Acta Chim. Sinica 2015, 73, 1038 (in Chinese).  doi: 10.3969/j.issn.0253-2409.2015.09.003
       

    9. [9]

      Li, Q.; Wang, J.; Ye, L.; Zhang, A.; Zhang, X.; Feng, Z. ChemNanoMat 2019, 5, 838.  doi: 10.1002/cnma.201900154

    10. [10]

      Frieler, L.; Ho, T. M.; Anthony, A.; Hidefumi, Y.; Yago, A. J. E.; Bhandari, B. R. J. Food Sci. Technol. 2019, 56, 1519.  doi: 10.1007/s13197-019-03643-7

    11. [11]

      Ho, T. M.; Bhandari, B. R. Powder Technol. 2015, 17, 585.

    12. [12]

      Morin-Crini, N.; Crini, G. Prog. Polym. Sci. 2013, 38, 344.  doi: 10.1016/j.progpolymsci.2012.06.005

    13. [13]

      Morin-Crini, N.; Winterton, P.; Fourmentin, S.; Wilson, L. D.; Fenyvesi, E.; Crini, G. Prog. Polym. Sci. 2018, 78, 1.

    14. [14]

      Manakker, F. V. D.; Vermonden, T.; Nostrum, C. F.; Hennink, W. E. Biomacromolecules 2009, 10, 3157.  doi: 10.1021/bm901065f

    15. [15]

      Solms, J.; Egli, R. H. Helv. Chim. Acta 1965, 48, 1225.  doi: 10.1002/hlca.19650480603

    16. [16]

      Solms, J. US 3420788, 1969.

    17. [17]

      Harada, A.; Li, J.; Kamachi, M. J. Am. Chem. Soc. 1994, 116, 3192.  doi: 10.1021/ja00087a004

    18. [18]

      Xu, M.; Zhang, Y. Polym. Mater. Sci. Eng. 2010, 26, 162 (in Chinese).
       

    19. [19]

      Arisaka, Y.; Yui, N. J. Mater. Chem. B 2019, 7, 2123.  doi: 10.1039/C9TB00256A

    20. [20]

      Gao, P.; Wang, P.; Geng, X.; Ye, L.; Zhang, A.; Feng, Z. Acta Chim. Sinica 2013, 71, 347 (in Chinese).  doi: 10.3969/j.issn.0253-2409.2013.03.014
       

    21. [21]

      Li, H.; Wang, J.; Ni, Y.; Zhou, Y.; Yan, D. Acta Chim. Sinica 2016, 74, 415 (in Chinese).
       

    22. [22]

      Arunachalam, M.; Harry, W. G. Prog. Polym. Sci. 2014, 39, 1043.  doi: 10.1016/j.progpolymsci.2013.11.005

    23. [23]

      Hashidzume, A.; Yamaguchi, H.; Harada, A. Eur. J. Org. Chem. 2019, 21, 3344.

    24. [24]

      Harada, A.; Hashidzume, A.; Yamaguchi, H.; Takashima, Y. Chem. Rev. 2009, 109, 5974.  doi: 10.1021/cr9000622

    25. [25]

      Okada, M.; Kamachi, M.; Harada, A. Macromolecules 1999, 32, 7202.  doi: 10.1021/ma990806n

    26. [26]

      Harada, A.; Kawaguchi, Y.; Nishiyama, T.; Kamachi, M. Macromol. Rapid. Commun. 1997, 18, 535.  doi: 10.1002/marc.1997.030180701

    27. [27]

      Rusa, C. C.; Tonelli, A. E. Macromolecules 2000, 33, 5321.  doi: 10.1021/ma000746h

    28. [28]

      Harada, A.; Suzuki, S.; Okada, M.; Kamachi, M. Macromolecules 1996, 29, 5611.  doi: 10.1021/ma960428b

    29. [29]

      Okumura, H.; Kawaguchi, Y.; Harada, A. Macromolecules 2001, 34, 6338.  doi: 10.1021/ma010516i

    30. [30]

      Loethen, S.; Kim, J. M.; Thompson, D. H. Polym. Rev. 2007, 47, 383.  doi: 10.1080/15583720701455145

    31. [31]

      Wang, P. J.; Wang, J.; Ye, L.; Zhang, A.; Feng, Z. G. Polymer 2012, 53, 2361.  doi: 10.1002/macp.201200105

    32. [32]

      Wang, J.; Li, S.; Ye, L.; Zhang, A.; Feng, Z. G. Macromol. Rapid Commun. 2012, 33, 1143.  doi: 10.1002/marc.201200017

    33. [33]

      Kato, K.; Kamotsu, H.; Ito, K. Macromolecules 2010, 43, 8799.  doi: 10.1021/ma101811n

    34. [34]

      Yu, S.; Zhang, Y.; Wang, X.; Zhen, X.; Zhang, Z.; Wu, W.; Jiang, X. Angew. Chem., Int. Ed. 2013, 52, 7272.  doi: 10.1002/anie.201301397

    35. [35]

      Zhang, X. W.; Zhu, X. Q.; Tong, X. M.; Ye, L.; Zhang, A.; Feng, Z. G. J. Polym. Sci. Part A: Polym. Chem. 2008, 46, 5283.  doi: 10.1002/pola.22856

    36. [36]

      Ren, L. X.; Ke, F. Y.; Chen, Y. M.; Liang, D.; Huang, J. Macromolecules 2008, 41, 5295.  doi: 10.1021/ma800632m

    37. [37]

      Dai, X. H.; Dong, C. M.; Yan, D. Y. J. Phys. Chem. B 2008, 112, 3644.  doi: 10.1021/jp710698c

    38. [38]

      Wang, J.; Gao, P.; Ye, L.; Zhang, A.; Feng, Z. G. J. Phys. Chem. B 2010, 114, 5342.

    39. [39]

      Wang, J.; Ye, L.; Zhang, A.; Feng, Z. G. J. Mater. Chem. 2011, 21, 3243.  doi: 10.1039/C0JM02803G

    40. [40]

      Wang, J.; Gao, P.; Wang, P. J.; Ye, L.; Zhang, A.; Feng, Z. G. Polymer 2011, 52, 374.

    41. [41]

      Wang, J.; Gao, P.; Ye, L.; Zhang, A.; Feng, Z. G. Polym. Chem. 2011, 2, 931.  doi: 10.1039/C0PY00360C

    42. [42]

      Wang, J.; Wang, P. J.; Ye, L.; Zhang, A.; Feng, Z. G. Polymer 2011, 52, 5362.  doi: 10.1016/j.polymer.2011.09.023

    43. [43]

      Wang, J.; Gao, P.; Jiang, L.; Ye, L.; Zhang, A.; Feng, Z. G. Polymer 2012, 53, 2864.  doi: 10.1016/j.polymer.2012.05.012

    44. [44]

      Duan, N.; Lu, H.; Ye, L.; Zhang, A.; Feng, Z. G. J. Phys. Chem. B 2019, 123, 5004.  doi: 10.1021/acs.jpcb.9b03005

    45. [45]

      Kong, T.; Ye, L.; Zhang, A.; Feng, Z. G.; Langmuir 2018, 34, 14076.

    46. [46]

      Gao, M.; Lu, H.; Song, R. H.; Ye, L.; Zhang, A.; Feng, Z. G. Polym. Chem. 2020, 11, 653.  doi: 10.1039/C9PY01619H

    47. [47]

      Wang, J.; Zhang, X. ACS Nano 2015, 9, 11389.  doi: 10.1021/acsnano.5b05281

    48. [48]

      Wang, J.; Du, R.; Zhang, X. ACS Appl. Mater. Interfaces 2018, 10, 1468.

    49. [49]

      Uenuma, S.; Maeda, R.; Yokayama, H.; Ito, K. Chem. Commun. 2019, 55, 4158.  doi: 10.1039/C9CC00511K

    50. [50]

      Uenuma, S.; Maeda, R.; Yokoyama, H.; Ito, K. Macromolecules 2019, 52, 3881.

    51. [51]

      Arisaka, Y.; Yui, N. Macromol. Rapid Commun. 2019, 40, 1900323.  doi: 10.1002/marc.201900323

    52. [52]

      Demirci, S.; Kinali-Demirci, S.; Jiang, S. Chem. Commun. 2017, 53, 3713.  doi: 10.1039/C7CC00193B

    53. [53]

      Zhang, L.; Zhao, J.; Wang, Y. Acta Chim. Sinica 2015, 73, 1182 (in Chinese).  doi: 10.3969/j.issn.0253-2409.2015.10.005
       

    54. [54]

      Lucio, D.; Martinez-Oharriz, M. C.; Gu, Z.; He, Y.; Aranaz, P.; Vizmanos, J. L.; Irache, J. M. Int. J. Pharm. 2018, 547, 97.  doi: 10.1016/j.ijpharm.2018.05.064

    55. [55]

      Azmeera, V.; Tungala, K.; Adhikary, P.; Kumar, K.; Krishnamoorthi, S. Int. J. Biol. Macromol. 2017, 104, 1204.

    56. [56]

      Li, L.; Guo, X.; Wang, J.; Liu, P.; Prud'homme, R. K.; May, B. L.; Lincoln, S. F. Macromolecules 2008, 41, 8677.  doi: 10.1021/ma8020147

    57. [57]

      Wang, J.; Guo, Z.; Xiong, J.; Wu, D.; Li, S.; Tao, Y.; Qin, Y.; Kong, Y. Int. J. Biol. Macromol. 2019, 125, 941.  doi: 10.1016/j.ijbiomac.2018.12.150

    58. [58]

      Shen, Y.; Niu, L.; Yu, Z.; Wang, M.; Shang, Z.; Yang, Y. Appl. Surf. Sci. 2018, 444, 42.  doi: 10.1021/jp710698c

    59. [59]

      Pooresmaeil, M.; Namazi, H. Colloids Surf. B: Biointer. 2018, 172, 17.

    60. [60]

      Zhang, B.; Yu, Q.; Zhang, Y. M.; Liu, Y. Chem. Commun. 2019, 55, 12200.

    61. [61]

      Bai, L.; Yan, H.; Bai, T.; Feng, Y.; Zhao, Y.; Ji, Y.; Feng, W.; Lu, T.; Nie, Y. Biomacromolecules 2019, 20, 4230.

    62. [62]

      Baimani, N.; Azar, P. A.; Husain, S. W.; Panahi, H. A.; Mehramizi, A. J. Chromatogr. A 2018, 1571, 38.  doi: 10.1016/j.chroma.2018.08.005

    63. [63]

      Helal, A. S.; Mazario, E.; Mayoral, A.; Decorse, P.; Losno, R.; Lion, C.; Ammar, S.; Hemadi, M. Environ. Sci. Nano 2018, 5, 158.  doi: 10.1039/C7EN00902J

    64. [64]

      Hong, S.; Li, Z.; Li, C.; Dong, C.; Shuang, S. Appl. Surface Sci. 2018, 427, 1189.  doi: 10.1016/j.apsusc.2017.08.201

    65. [65]

      Alsbaiee, A.; Smith, B. J.; Xiao, L.; Ling, Y.; Helbling, D. E.; Dichtel, W. R. Nature 2016, 529, 190.

    66. [66]

      Xu, G.; Xie, X.; Qin, L.; Hu, X.; Zhang, D.; Xu, J.; Li, D.; Ji, X.; Huang, Y.; Tu, Y.; Jiang, L.; Wei, D. Green Chem. 2019, 21, 6062.  doi: 10.1039/C9GC02422K

    67. [67]

      Wang, J.; Wang, X.; Zhang, X. J. Mater. Chem. A 2017, 5, 4308.  doi: 10.1039/C6TA09677H

    68. [68]

      Lenohardt, E. E.; Meador, M. A. B.; Wooley, K. L. Chem. Mater. 2018, 30, 6226.  doi: 10.1021/acs.chemmater.8b02843

    69. [69]

      Mizuno, S.; Asoh, T. A.; Takashima, Y.; Harada, A.; Uyama, H. Polym. Degrad. Stability 2019, 160, 136.  doi: 10.1016/j.polymdegradstab.2018.12.014

    70. [70]

      Kretschmann, O.; Choi, S. W.; Miyauchi, M.; Tomatsu, I.; Harada, A.; Ritter, H. Angew. Chem. Int. Ed. 2006, 45, 4361.  doi: 10.1002/anie.200504539

    71. [71]

      Cheng, H.; Fan, X.; Wu, C.; Wang, X.; Wang, L. J.; Loh, X. J.; Li, Z.; Wu, Y. L. Macromol. Rapid Commun. 2019, 40, 1800207.

    72. [72]

      Shukula, A.; Singh, A. P.; Ray, B.; Aswal, V.; Kar, A. G.; Maiti, P. J. Colloid Interface Sci. 2019, 534, 215.

    73. [73]

      Cocq, A.; Rousseau, C.; Bricout, H.; Oliva, E.; Bonnet, V.; Djedaini-Pilard, F.; Monflier, E.; Tilloy, S. Eur. J. Org. Chem. 2019, 4863.

    74. [74]

      Furlan, A. L.; Buchoux, S.; Miao, Y.; Banchet, V.; Leteve, M.; Lambertyn, V.; Michel, J.; Sarazin, C.; Bonnet, V. New J. Chem. 2018, 42, 20171.  doi: 10.1039/C8NJ03237H

    75. [75]

      Arslan, M.; Sanyal, R.; Sanyal, A. Polym. Chem. 2020, 11, 615.

    76. [76]

      Seo, J. H.; Kakinoki, S.; Inoue, Y.; Yamaoka, T.; Ishihara, K.; Yui, N. J. Am. Chem. Soc. 2013, 135, 5513.

    77. [77]

      Zhang, Y.; Zhou, Q.; Jia, S.; Lin, K.; Fan, G.; Yuan, J.; Yu, S.; Shi, J. ACS Appl. Mater. Interfaces 2019, 11, 46427.

    78. [78]

      Rajendran, A. K.; Arisaka, Y.; Iseki, S.; Yui, N. ACS Biomater. Sci. Eng. 2019, 5, 5652.

    79. [79]

      Srinivasachari, S.; Fichter, K. M.; Reineke, T. M. J. Am. Chem. Soc. 2008, 130, 4618.

    80. [80]

      Li, J.; Yang, C.; Li, H.; Wang, X.; Goh, S. H.; Ding, J. L.; Wang, D. Y.; Leong, K. W. Adv. Mater. 2006, 18, 2969.  doi: 10.1002/adma.200600812

    81. [81]

      Zhang, J.; Zhang, L.; Li, S.; Yin, C.; Li, C.; Wu, W.; Jiang, X. ACS Biomater. Sci. Eng. 2018, 4, 1963.  doi: 10.1021/acsbiomaterials.7b00464

    82. [82]

      Zhang, Y.; Zhang, Z.; Chen, W.; Li, C.; Wu, W.; Jiang, X. Acta Polym. Sinica 2017, 48, 306 (in Chinese).  doi: 10.11777/j.issn1000-3304.2017.16268

    83. [83]

      Kim, H.; Han, J.; Park, J. H. J. Control. Release 2020, 319, 77.

    84. [84]

      Li, X.; Liu, H.; Li, J.; Deng, Z.; Li, L.; Liu, J.; Yuan, J.; Gao, P.; Yang, Y.; Zhong, S. Colloids Surf. B: Biointer. 2019, 183, 110425.

    85. [85]

      Huang, T.; Sheng, G.; Manchanda, P.; Emwas, A. H.; Lai, Z.; Nunes, S. P.; Peinemann, K. V. Sci. Adv. 2019, 5, eaax6976.

    86. [86]

      Pierre, A. C.; Pajonk, G. M. Chem. Rev. 2002, 102, 4243.

    87. [87]

      Wang, J.; Wei, Y.; He, W.; Zhang, X. RSC Adv. 2014, 4, 51146.

    88. [88]

      Wang, J.; Zhang, Y.; Wei, Y.; Zhang, X. Micropor. Mesopor. Mater. 2015, 218, 192.

    89. [89]

      Wang, J.; Zhang, Y.; Zhang, X. J. Mater. Chem. A 2016, 4, 11408.  doi: 10.1039/C6TA04306B

    90. [90]

      Li, X.; Wang, J.; Zhao, Y.; Zhang, X. ACS Appl. Mater. Interfaces 2018, 10, 16901.  doi: 10.1021/acsami.8b04081

    91. [91]

      Liu, R.; Wang, J.; Du, Y.; Liao, J.; Zhang, X. J. Solid State Chem. 2019, 279, 120971.

    92. [92]

      Jiang, L.; Kato, K.; Mayumi, K.; Yokoyama, H.; Ito, K. ACS Macro Lett. 2017, 6, 281.

    93. [93]

      Matias, T.; Marques, J.; Conceicao, F.; Maleki, H.; Quina, M. J.; Gando-Ferreira, L.; Valente, A. J. M.; Portugal, A.; Duraes, L. J. Sol-Gel Sci. Technol. 2017, 84, 409.  doi: 10.1007/s10971-017-4373-4

    94. [94]

      Zhou, K.; Li, Y.; Li, Q.; Du, Q.; Wang, D.; Sui, K.; Wang, C.; Li, H.; Xia, Y. J. Polym. Environ. 2018, 26, 3362.  doi: 10.1007/s10924-018-1219-2

    95. [95]

      Jia, H.; Tian, Q.; Xu, J.; Lu, L.; Ma, X.; Yu, Y. Microchim. Acta 2018, 185, 517.  doi: 10.1007/s00604-018-3056-3

    96. [96]

      Xie, Y.; Tu, X.; Ma, X.; Fang, Q.; Lu, L.; Yu, Y.; Liu, G.; Liu, C. Nanotechnology 2019, 30, 185502.

    97. [97]

      Noda, Y.; Hayashi, Y.; Ito, K. J. Appl. Polym. Sci. 2014, 131, 40509.

    98. [98]

      Li, S.; Wang, J.; Gao, P.; Ye, L.; Zhang, A.; Feng, Z. G. Sci. China Chem. 2012, 55, 1115.  doi: 10.1007/s11426-012-4587-9

    99. [99]

      Li, S.; Wang, J.; Jiang, L.; Ye, L.; Zhang, A.; Feng, Z. G. Chin. J. Chem. 2012, 30, 2453.  doi: 10.1002/cjoc.201200280

    100. [100]

      Okumura, Y.; Ito, K. Adv. Mater. 2001, 13, 48.

    101. [101]

      Araki, J.; Ito, K. Soft Matter 2007, 3, 1456.  doi: 10.1039/b705688e

    102. [102]

      Voorhaar, L.; Hoogenboom, R. Chem. Soc. Rev. 2016, 45, 4013.  doi: 10.1039/C6CS00130K

    103. [103]

      Tan, M.; Wang, J.; Song, W.; Fang, J.; Zhang, X. J. Mater. Chem. A 2019, 7, 1244.

    104. [104]

      Buwalda, S. J.; Boere, K. W. M.; Dijkstra, P. J.; Feijen, J.; Vermonden, T.; Hennink, W. E. J. Control. Release 2014, 190, 254.  doi: 10.1016/j.jconrel.2014.03.052

    105. [105]

      Shinohaea, Y.; Kayashima, K.; Okumura, Y.; Zhao, C.; Ito, K.; Amemiya, Y. Macromolecules 2006, 39, 7386.  doi: 10.1021/ma061037s

  • 加载中
    1. [1]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    2. [2]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    3. [3]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    4. [4]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

    5. [5]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    6. [6]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    7. [7]

      Xinghai Liu Hongke Wu . Exploration and Practice of Ideological and Political Education in Heterocyclic Chemistry Based on "Fentanyl" Event. University Chemistry, 2024, 39(8): 359-364. doi: 10.3866/PKU.DXHX202312100

    8. [8]

      Zheqi Wang Yawen Lin Shunliu Deng Huijun Zhang Jinmei Zhou . Antiviral Strategies: A Brief Review of the Development History of Small Molecule Antiviral Drugs. University Chemistry, 2024, 39(9): 85-93. doi: 10.12461/PKU.DXHX202403108

    9. [9]

      Peng Zhan . Practice and Reflection in Training Medicinal Chemistry Graduate Students. University Chemistry, 2024, 39(6): 112-121. doi: 10.3866/PKU.DXHX202402022

    10. [10]

      Zhibei Qu Changxin Wang Lei Li Jiaze Li Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039

    11. [11]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    12. [12]

      Ziheng Zhuang Xiao Xu Kin Shing Chan . Superdrugs for Superbugs. University Chemistry, 2024, 39(9): 128-133. doi: 10.3866/PKU.DXHX202309040

    13. [13]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    14. [14]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    15. [15]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    16. [16]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    17. [17]

      Cunming Yu Dongliang Tian Jing Chen Qinglin Yang Kesong Liu Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008

    18. [18]

      Zhilian Liu Wengui Wang Hongxiao Yang Yu Cui Shoufeng Wang . Ideological and Political Education Design for the Synthesis of Irinotecan Drug Intermediate 7-Ethyl Camptothecin. University Chemistry, 2024, 39(2): 89-93. doi: 10.3866/PKU.DXHX202306012

    19. [19]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Preparation of Superhydrophobic Surfaces and Their Application in Oily Wastewater Treatment: Design of a Comprehensive Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(2): 34-40. doi: 10.3866/PKU.DXHX202307081

    20. [20]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

Metrics
  • PDF Downloads(121)
  • Abstract views(5138)
  • HTML views(1710)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return