Citation: Zhu Ren-Yi, Liao Kui, Yu Jin-Sheng, Zhou Jian. Recent Advances in Catalytic Asymmetric Synthesis of P-Chiral Phosphine Oxides[J]. Acta Chimica Sinica, ;2020, 78(3): 193-216. doi: 10.6023/A20010002 shu

Recent Advances in Catalytic Asymmetric Synthesis of P-Chiral Phosphine Oxides

  • Corresponding author: Yu Jin-Sheng, jsyu@chem.ecnu.edu.cn Zhou Jian, jzhou@chem.ecnu.edu.cn
  • Received Date: 1 January 2020
    Available Online: 21 February 2020

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 21725203, 21901074)the National Natural Science Foundation of China 21901074the National Natural Science Foundation of China 21725203

Figures(35)

  • P-Chiral phosphine oxides are a class of privileged structures, which have important applications in the field of medicinal chemistry, organic synthesis, life and material science. Recent years have witnessed significant progress in the catalytic asymmetric construction of such scaffolds. These advances are summarized in this review according to the following three major strategies:desymmetrization of prochiral tertiary phosphine oxides, (dynamic) kinetic resolution of tertiary phosphine oxides, and catalytic asymmetric reactions involving secondary phosphine oxides, and discusses the possible reaction mechanism, the advantage and disadvantage of each type of reactions, which would provide reference and inspiration for the researchers engaged in organic synthesis and organic phosphorus chemistry.
  • 加载中
    1. [1]

      (a) Dutartre, M.; Bayardon, J.; Jugé, S. Chem. Soc. Rev. 2016, 45, 5771. (b) Macia, E. Chem. Soc. Rev. 2005, 34, 691.

    2. [2]

      (a) Kazemi, M.; Tahmasbi, A. M.; Valizadeh, R.; Naserian, A. A.; Soni, A. Agric. Sci. Res. J. 2012, 2, 512. (b) Lamberth, C. Tetrahedron 2010, 66, 7239.

    3. [3]

      De Clercq, E. Clin. Microbiol. Rev. 2003, 16, 569.  doi: 10.1128/CMR.16.4.569-596.2003

    4. [4]

      (a) Akiyama, T. Chem. Rev. 2007, 107, 5744. (b) Milo, A.; Neel, A. J.; Toste, F. D.; Sigman, M. S. Science 2015, 347, 737.

    5. [5]

      Duffy, M. P.; Delaunay, W.; Bouit, P.-A.; Hissler, M. Chem. Soc. Rev. 2016, 45, 5296.  doi: 10.1039/C6CS00257A

    6. [6]

      Ohmaru, Y.; Sato, N.; Mizutani, M.; Kotani, S.; Sugiura, M.; Nakajima, M. Org. Biomol. Chem. 2012, 10, 4562.  doi: 10.1039/c2ob25338k

    7. [7]

      Takaya, H.; Mashima, K.; Koyano, K.; Yagi, M.; Kumobayashi, H.; Taketomi, T.; Akutagawa, S.; Noyori, R. J. Org. Chem. 1986, 51, 629.

    8. [8]

      Xu, B.; Zhu, S.-F.; Xie, X.-L, Shen, J.-J.; Zhou, Q.-L. Angew. Chem., Int. Ed. 2011, 50, 11483.  doi: 10.1002/anie.201105485

    9. [9]

      Pye, P. J.; Rossen, K.; Reamer, R. A.; Tsou, N. N.; Volante, R. P.; Reider, P. J. J. Am. Chem. Soc. 1997, 119, 6207.  doi: 10.1021/ja970654g

    10. [10]

      Schulze, C. J.; Navarro, G.; Ebert, D.; DeRisi, J.; Linington, R. G. J. Org. Chem. 2015, 80, 1312.  doi: 10.1021/jo5024409

    11. [11]

      Cholongitas, E.; Papatheodoridis, G. V. Ann. Gastroenterol. 2014, 27, 331.

    12. [12]

      Clarion, L.; Jacquard, C.; Sainte-Catherine, O.; Loiseau, S.; Filippini, D.; Hirlemann, M.-H.; Volle, J.-N.; Virieux, D.; Lecouvrey, M.; Pirat, J.-L.; Bakalara, N. J. Med. Chem. 2012, 55, 2196.  doi: 10.1021/jm201428a

    13. [13]

      (a) Baraniak, J.; Kinas, R. W.; Lesiak, K.; Stec, W. J. J. Chem. Soc. 1979, 940. (b) Dostmann, W. R. G.; Taylor, S. S.; Genieser, H.-G.; Jastorff, B.; Døskeland, S. O.; Øgreid, D. J. Biol. Chem. 1990, 265, 10484.

    14. [14]

      Matsukawa, M.; Sugama, H.; Imamoto, T. Tetrahedron Lett. 2000, 41, 6461.  doi: 10.1016/S0040-4039(00)01030-3

    15. [15]

      (a) Iseki, K.; Kuroki, Y.; Takahashi, M.; Kobayashi, Y. Tetrahedron Lett. 1996, 37, 5149. (b) Iseki, K.; Kuroki, Y.; Takahashi, M.; Kishimoto, S. Tetrahedron 1997, 53, 3513.

    16. [16]

      Xu, G.; Senanayake, C. H.; Tang, W. Acc. Chem. Res. 2019, 52, 1101.  doi: 10.1021/acs.accounts.9b00029

    17. [17]

      Selected examples using P-chiral phosphines as ligands: (a) Vineyard, B. D.; Knowles, W. S.; Sabacky, M. J.; Bachman, G. L.; Weinkauff, D. J. J. Am. Chem. Soc. 1977, 99, 5946. (b) Gridnev, I. D.; Higashi, N.; Asakura, K.; Imamoto, T. J. Am. Chem. Soc. 2000, 122, 7183. (c) Tang, W.; Zhang, X. Angew. Chem., Int. Ed. 2002, 41, 1612. (d) Taylor, A. M.; Altman, R. A.; Buchwald S. L. J. Am. Chem. Soc. 2009, 131, 9900. (e) Imamoto, T.; Tamura, K.; Zhang, Z.; Horiuchi, Y.; Sugiya, M.; Yoshida, K.; Yanagisawa, A.; Gridnev, I. D. J. Am. Chem. Soc. 2012, 134, 1754. (f) Liu, G.; Liu, X.; Cai, Z.; Jiao, G.; Xu, G.; Tang, W. Angew. Chem., Int. Ed. 2013, 52, 4235. Selected examples using P-chiral phosphine as organocatalysts: (g) Sampath, M.; Loh, T.-P. Chem. Sci. 2010, 1, 739. (h) Rémond, E.; Bayardon, J.; Takizawa, S.; Rousselin, Y.; Sasai; H.; Jugé, S. Org. Lett. 2013, 15, 1870. (i) Takizawa, S.; Rémond, E.; Arteaga, F.; Yoshida, Y.; Sridharan, V.; Bayardon, J.; Jugé, S.; Sasai, H. Chem. Commun. 2013, 49, 8392. (j) Henry, C. E.; Xu, Q.-H.; Fan, Y.-C.; Martin, T. J.; Belding, L.; Dudding, T.; Kwon, O. J. Am. Chem. Soc. 2014, 136, 11890.

    18. [18]

    19. [19]

      Selected examples for chiral resolution: see ref. 17a, and (a) Korpiun, O.; Lewis, R. A.; Chickos, J.; Mislow, K. J. Am. Chem. Soc. 1968, 90 4842. For chiral auxiliaries: (b) Berger, O.; Montchamp, J.-L. Angew. Chem., Int. Ed. 2013, 52, 11377. (c) Han, Z. S.; Goyal, N.; Herbage, M. A.; Sieber, J. D.; Qu, B.; Xu, Y.; Li, Z.; Reeves, J. T.; Desrosiers, J.-N.; Ma, S.; Grinberg, N.; Lee, H.; Mangunuru, H. P. R.; Zhang, Y.; Krishnamurthy, D.; Lu, B. Z.; Song, J. J.; Wang, G.; Senanayake, C. H. J. Am. Chem. Soc. 2013, 135, 2474. (d) Gwon, D.; Lee, D.; Kim, J.; Park, S.; Chang, S. Chem. Eur. J. 2014, 20, 12421. For asymmetric oxidation of tertiary phosphines: (e) Bergin, E.; O'Connor, C. T.; Robinson, S. B.; McGarrigle, E. M.; O'Mahony, C. P.; Gilheany, D. G. J. Am. Chem. Soc. 2007, 129 9566. (f) Rajendran, K. V.; Kennedy, L.; Gilheany, D. G. Eur. J. Org. Chem. 2010, 5642. (g) Nikitin, K.; Rajendran, K. V.; Müller-Bunz, H.; Gilheany, D. G. Angew. Chem., Int. Ed. 2014, 53, 1906.

    20. [20]

      (a) Zeng, X.-P.; Cao, Z.-Y.; Wang, Y.-H.; Zhou, F.; Zhou, J. Chem. Rev. 2016, 116, 7330. (b) Petersen, K. S. Tetrahedron Lett. 2015, 56, 6523. (c) Willis, M. C. J. Chem. Soc., Perkin Trans. 1 1999, 1765.

    21. [21]

      Nishida, G.; Noguchi, K.; Hirano, M.; Tanaka, K. Angew. Chem., Int. Ed. 2008, 47, 3410.  doi: 10.1002/anie.200800144

    22. [22]

      Zheng, Y.; Guo, L.; Zi, W. Org. Lett. 2018, 20, 7039.  doi: 10.1021/acs.orglett.8b02982

    23. [23]

      Zhang, Y.; Zhang, F.; Chen, L.; Xu, J.; Liu, X.; Feng, X. ACS Catal. 2019, 9, 4834.  doi: 10.1021/acscatal.9b00860

    24. [24]

      Zhu, R. Y.; Chen, L.; Hu, X. S.; Zhou, F.; Zhou, J. Chem. Sci. 2020, 11, 97.  doi: 10.1039/C9SC04938J

    25. [25]

      (a) Meng, J.-C.; Fokin, V. V.; Finn, M. G. Tetrahedron Lett. 2005, 46, 4543. (b) Stephenson, G. R.; Buttress, J. P.; Deschamps, D.; Lancelot, M.; Martin, J. P.; Sheldon, A. I. G.; Alayrac, C.; Gaumont, A.-C.; Page, P. C. B. Synlett 2013, 24, 2723. (c) Song, T.; Li, L.; Zhou, W.; Zheng, Z.-J.; Deng, Y.; Xu, Z.; Xu, L.-W. Chem. Eur. J. 2015, 21, 554. (d) Chen, M.-Y.; Song, T.; Zheng, Z.-J.; Xu, Z.; Cui, Y.-M.; Xu, L.-W. RSC Adv. 2016, 6, 58698. (e) Chen, M.-Y.; Xu, Z.; Chen, L.; Song, T.; Zheng, Z.-J.; Cao, J.; Cui, Y.-M., Xu, L.-W. ChemCatChem 2018, 10, 280. For achiral version: (f) Rodionov, V. O.; Fokin, V. V.; Finn, M. G. Angew. Chem., Int. Ed. 2005, 44, 2210.

    26. [26]

      (a) Worrell, B. T.; Malik, J. A.; Fokin, V. V. Science 2013, 340, 457. (b) Díez, J.; Gamasa, M. P.; Panera, M. Inorg. Chem. 2006, 45, 10043.

    27. [27]

      Zhou, F.; Tan, C.; Tang, J.; Zhang, Y.-Y.; Gao, W.-M.; Wu, H.-H.; Yu, Y.-H.; Zhou, J. J. Am. Chem. Soc. 2013, 135 10994.  doi: 10.1021/ja4066656

    28. [28]

      (a) Osako, T.; Uozumi, Y. Org. Lett. 2014, 16, 5866. (b) Osako, T.; Uozumi, Y. Synlett 2015, 26, 1475.

    29. [29]

      For reviews: (a) Ren, Y.; Baumgartner, T. Dalton Trans. 2012, 41, 7792. (b) Matano, Y.; Imahori, H. Org. Biomol. Chem. 2009, 7, 1258. For recent examples: (c) Stolar, M.; Borau-Garcia, J.; Toonen, M.; Baumgartner, T. J. Am. Chem. Soc. 2015, 137, 3366. (d) Yamaguchi, E.; Wang, C.; Fukazawa, A.; Taki, M.; Sato, Y.; Sasaki, T.; Ueda, M.; Sasaki, N.; Higashiyama, T.; Yamaguchi, S. Angew. Chem., Int. Ed. 2015, 54, 4539. (e) Reus, C.; Stolar, M.; Vanderkley, J.; Nebauer, J.; Baumgartner, T. J. Am. Chem. Soc. 2015, 137, 11710.

    30. [30]

      Tahara, Y.-K.; Sato, T.; Matsubara, R.; Kanyiva, K. S.; Shibata, T. Heterocycles 2016, 93, 685.  doi: 10.3987/COM-15-S(T)57

    31. [31]

      Harvey, J. S.; Malcolmson, S. J.; Dunne, K. S.; Meek, S. J.; Thompson, A. L.; Schrock, R. R.; Hoveyda, A. H.; Gouverneur, V. Angew. Chem., Int. Ed. 2009, 48, 762.  doi: 10.1002/anie.200805066

    32. [32]

      Wang, Z.; Hayashi. T. Angew. Chem., Int. Ed. 2018, 57, 1702.  doi: 10.1002/anie.201712572

    33. [33]

      For selected reviews on C-H bond functionalization, see: (a) Kakiuchi, F.; Murai, S. Acc. Chem. Res. 2002, 35, 826. (b) Giri, R.; Shi, B.-F.; Engle, K. M.; Maugel, N.; Yu, J.-Q. Chem. Soc. Rev. 2009, 38, 3242. (c) Xu, L.-M.; Li, B.-J.; Yang, Z.; Shi, Z.-J. Chem. Soc. Rev. 2010, 39, 712. (d) Albrecht, M. Chem. Rev. 2010, 110, 576. (e) Song, G.; Wang, F.; Li, X. Chem. Soc. Rev. 2012, 41, 3651. (f) Newton, C. G.; Wang, S.-G.; Oliveira, C. C.; Cramer, N. Chem. Rev. 2017, 117, 8908.

    34. [34]

      Du, Z.-J.; Guan, J.; Wu, G.-J.; Xu, P.; Gao, L.-X.; Han, F.-S. J. Am. Chem. Soc. 2015, 137, 632.  doi: 10.1021/ja512029x

    35. [35]

      Guan, J.; Wu, G.-J.; Han, F.-S. Chem. Eur. J. 2014, 20, 3301.  doi: 10.1002/chem.201303056

    36. [36]

      (a) Shi, B.-F.; Maugel, N.; Zhang, Y.-H.; Yu, J.-Q. Angew. Chem., Int. Ed. 2008, 47, 4882. (b) Shi, B.-F.; Zhang, Y.-H.; Lam, J.-K.; Wang, D.-H.; Yu, J.-Q. J. Am. Chem. Soc. 2010, 132, 460. (c) Yang, Y.-F.; Hong, X.; Yu, J.-Q.; Houk, K. N. Acc. Chem. Res. 2017, 50, 2853.

    37. [37]

      Sun, Y.; Cramer, N. Angew. Chem., Int. Ed. 2017, 56, 364.  doi: 10.1002/anie.201606637

    38. [38]

      Gwon, D.; Park, S.; Chang, S. Tetrahedron 2015, 71, 4504.  doi: 10.1016/j.tet.2015.02.065

    39. [39]

      Jang, Y.-S.; Dieckmann, M.; Cramer, N. Angew. Chem., Int. Ed. 2017, 56, 15088.

    40. [40]

      Jang, Y.-S.; Woźniak, Ł.; Pedroni, J.; Cramer, N. Angew. Chem., Int. Ed. 2018, 57, 12901.  doi: 10.1002/anie.201807749

    41. [41]

      Lin, Z.-Q.; Wang, W.-Z.; Yan, S.-B.; Duan, W.-L. Angew. Chem., Int. Ed. 2015, 54, 6265.  doi: 10.1002/anie.201500201

    42. [42]

      Liu, L.; Zhang, A.-A.; Wang, Y.; Zhang, F.; Zuo, Z.; Zhao, W.-X.; Feng, C.-L.; Ma, W. Org. Lett. 2015, 17, 2046.  doi: 10.1021/acs.orglett.5b00122

    43. [43]

      Lin, Y.; Ma, W.-Y.; Sun, Q.-Y.; Cui, Y.-M.; Xu, L.-W. Synlett 2017, 28, 1432.  doi: 10.1055/s-0036-1588983

    44. [44]

      Li, Z.; Lin, Z.-Q.; Yan, C.-G.; Duan, W.-L. Organometallics 2019, 38, 3916.  doi: 10.1021/acs.organomet.9b00216

    45. [45]

      Xu, G. Q.; Li, M. H.; Wang, S. L.; Tang, W. J. Org. Chem. Front. 2015, 2, 1342.  doi: 10.1039/C5QO00142K

    46. [46]

      Huang, Z.; Huang, X.; Li, B.; Mou, C.; Yang, S.; Song, B.-A.; Chi, Y. R. J. Am. Chem. Soc. 2016, 138, 7524.  doi: 10.1021/jacs.6b04624

    47. [47]

      Yang, G.-H.; Li, Y.; Li, X.; Cheng, J.-P. Chem. Sci. 2019, 10, 4322.

    48. [48]

      Toda, Y.; Pink, M.; Johnston, J. N. J. Am. Chem. Soc. 2014, 136, 14734.  doi: 10.1021/ja5088584

    49. [49]

      Dobish, M. C.; Johnston, J. N. J. Am. Chem. Soc. 2011, 134, 6068.

    50. [50]

      Trost, B. M.; Spohr, S. M.; Rolka, A. B.; Kalnmals, C. A. J. Am. Chem. Soc. 2019, 141, 14098.  doi: 10.1021/jacs.9b07340

    51. [51]

      Liu, S.; Zhang, Z. F.; Xie, F.; Butt, N. A.; Sun, L.; Zhang, W. B. Tetrahedron Asymmetry 2012, 23, 329.  doi: 10.1016/j.tetasy.2012.02.018

    52. [52]

      Sun, Y.; Cramer, N. Chem. Sci. 2018, 9, 2981.  doi: 10.1039/C7SC05411D

    53. [53]

      Lim, K. M.-H.; Hayashi, T. J. Am. Chem. Soc. 2017, 139, 8122.  doi: 10.1021/jacs.7b04570

    54. [54]

      Emmick, T. L.; Letsinger, R. L. J. Am. Chem. Soc. 1968, 90, 3459.  doi: 10.1021/ja01015a030

    55. [55]

      Fu, X.; Loh, W.-T.; Zhang, Y.; Chen, T.; Ma, T.; Liu, H.; Wang, J.; Tan, C.-H. Angew. Chem., Int. Ed. 2009, 48, 7387.  doi: 10.1002/anie.200903971

    56. [56]

      Xie, P. Z.; Guo, L.; Xu, L. L.; Loh, T.-P. Chem. Asian J. 2016, 11, 1353.  doi: 10.1002/asia.201600108

    57. [57]

      (a) Zhang, H.; Sun, Y.-M.; Yao, L.; Ji, S.-Y.; Zhao, C.-Q.; Han, L.-B. Chem. Asian J. 2014, 9, 1329. (b) Wang, J.-P.; Nie, S.-Z.; Zhou, Z.-Y.; Ye, J.-J.; Wen, J.-H.; Zhao, C.-Q. J. Org. Chem. 2016, 81, 7644.

    58. [58]

      Du, J.-Y.; Ma, Y.-H.; Yuan, R.-Q.; Xin, N. N.; Nie, S.-Z.; Ma, C.-L.; Li, C.-Z.; Zhao, C.-Q. Org. Lett. 2018, 20, 477.  doi: 10.1021/acs.orglett.7b03863

    59. [59]

      Beaud, R.; Phipps, R. J.; Gaunt, M. J. J. Am. Chem. Soc. 2016, 138, 13183.  doi: 10.1021/jacs.6b09334

    60. [60]

      Zhang, Y.; He, H.; Wang, Q. Y.; Cai, Q. Tetrahedron Lett. 2016, 57, 5308.  doi: 10.1016/j.tetlet.2016.10.048

    61. [61]

      Dai, Q.; Li, W.-B.; Li, Z.-M.; Zhang, J.-L. J. Am. Chem. Soc. 2019, 141, 20556.  doi: 10.1021/jacs.9b11938

    62. [62]

      Liu, X.-T.; Zhang, Y.-Q.; Han, X.-Y.; Sun, S.-P.; Zhang, Q.-W. J. Am. Chem. Soc. 2019, 141, 16584.  doi: 10.1021/jacs.9b08734

  • 加载中
    1. [1]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    2. [2]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    3. [3]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    4. [4]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    5. [5]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    6. [6]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    7. [7]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    8. [8]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    9. [9]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    10. [10]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    11. [11]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    12. [12]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    13. [13]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    14. [14]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    15. [15]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    16. [16]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    17. [17]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    18. [18]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    19. [19]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    20. [20]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

Metrics
  • PDF Downloads(163)
  • Abstract views(4178)
  • HTML views(959)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return