Citation: Deng Yingyi, Qian Yinyin, Xie Ying, Zhang Lei, Zheng Bing, Lou Yuanqing, Yu Haitao. Effect of Li Adsorption on Work Function Modulation of Bilayer α-Borophene: A Theoretical Study[J]. Acta Chimica Sinica, ;2020, 78(4): 344-354. doi: 10.6023/A19120455 shu

Effect of Li Adsorption on Work Function Modulation of Bilayer α-Borophene: A Theoretical Study

  • Corresponding author: Zheng Bing, zhengbing@hlju.edu.cn
  • † These authors contributed equally to this work.
    Supporting information for this article is available free of charge via the Internet at http://sioc-journal.cn
  • Received Date: 29 December 2019
    Available Online: 24 March 2020

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 21601054, 11871198, 11801116), the University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province of China (No. UNPYSCT-2017126), and the Training Program of Innovation and Entrepreneurship for Undergraduates of Heilongjiang Province (No. 201910212073)the University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province of China UNPYSCT-2017126the National Natural Science Foundation of China 11871198the National Natural Science Foundation of China 21601054the Training Program of Innovation and Entrepreneurship for Undergraduates of Heilongjiang Province 201910212073the National Natural Science Foundation of China 11801116

Figures(12)

  • As a new member of the two-dimensional nanomaterial family, borophene is regarded as a potential material platform for nanoscale electronic devices. Especially, borophene-based electrodes have potential application values in light-emitting diodes, organic light-emitting diodes, organic solar cells and field emitters. Therefore, the work function modulation (to an optimal value) of borophene is highly important to maximize the energy conversion efficiency and performance of the device. Based on the first-principles density functional theory, the effects of Li adsorption on the structure, electronic properties and work function of double-layer α-borophene (DBBP) are studied. The calculation results show that Li adsorption can effectively adjust the work function of DBBP from 4.65 eV to 1.96~4.46 eV with different Li contents. This engineering range is superior to what are reported in the literatures for Li-adsorbed monolayer BBP (modified from 4.16 eV to 2.31~3.67 eV), and double-layer graphene with intercalated Li (3.4~3.9 eV) and K (3.3~3.8 eV). The work functions of Li2(D)/DBBP (3.73 eV) and Li3(D)/DBBP (2.91 eV) are close to the commonly used electrode materials Mg and Ca, respectively, while the work function of Li4(D)/DBBP is even lower than Ca. In addition, the factors that affect the work function reduction of Lin/DBBP relative to DBBP, such as configuration, substrate deformation, binding energy, electron transfer, charge rearrangement, electrostatic potential, vacuum and Fermi level, are systematically studied. The results demonstrate that the decrease in the Lin/DBBP work function is mainly due to the change in Fermi level, while the change in vacuum level only plays a minor role. Apart from that, the deformation of the substrate does not have a positive effect on the reduction of the Lin/DBBP work function, but the electron transfer from the adsorbed atoms to the matrix (charge redistribution caused by chemical effects) is the inherent reason for the decrease in the Lin/DBBP work function. This study shows that Li adsorption is a simple and effective method to reduce the work function of DBBP. Due to its metallic character and extremely low work function, Li-adsorbed DBBP nanomaterials can be utilized as cathode materials in electronic devices.
  • 加载中
    1. [1]

      Mannix, A. J.; Zhou, X. F.; Kiraly, B.; Wood, J. D.; Alducin, D.; Myers, B. D.; Liu, X. L.; Fisher, B. L.; Santiago, U.; Guest, J. R.; Yacaman, M. J.; Ponce, A.; Oganov, A. R.; Hersam, M. C.; Guisinger, N. P. Science 2015, 350, 1513.  doi: 10.1126/science.aad1080

    2. [2]

      Feng, B.; Zhang, J.; Zhong, Q.; Li, W.; Li, S.; Li, H.; Cheng, P.; Meng, S.; Chen, L.; Wu, K. Nat. Chem. 2016, 8, 563.  doi: 10.1038/nchem.2491

    3. [3]

      Zhang, D.; Yuan, Z.; Zhang, G.; Tian, N.; Liu, D.; Zhang, Y. Acta Chim. Sinica 2018, 76, 537(in Chinese).
       

    4. [4]

      Yuan, Z.; Liu, D.; Tian, N.; Zhang, G.; Zhang, Y. Acta Chim. Sinica 2016, 74, 488(in Chinese).
       

    5. [5]

      Han, Y.; Geng, Z.; Wang, Y.; Liang, J.; Yan, P. Acta Chim. Sinica 2009, 67, 773(in Chinese).

    6. [6]

      Zhang, L.; Gao, S.; Liu, W.; Tang, R.; Shang, N.; Wang, C.; Wang, Z. Chin. J. Org. Chem. 2014, 34, 1542(in Chinese).

    7. [7]

      Chang, Z.-W.; Meng, F.-L.; Zhong, H.-X.; Zhang, X.-B. Chin. J. Chem. 2018, 36, 287.  doi: 10.1002/cjoc.201700752

    8. [8]

      Xu, Z.; Li, Y.; Shi, P.; Wang, B.; Huang, X. Chin. J. Org. Chem. 2013, 33, 2162(in Chinese).

    9. [9]

      Galeev, T. R.; Chen, Q.; Guo, J.-C.; Bai, H.; Miao, C.-Q.; Lu, H.-G.; Sergeeva, A. P.; Li, S.-D.; Boldyrev, A. I. Phys. Chem. Chem. Phys. 2011, 13, 11575.  doi: 10.1039/c1cp20439d

    10. [10]

      Sun, X.; Liu, X.; Yin, J.; Yu, J.; Li, Y.; Hang, Y.; Zhou, X.; Yu, M.; Li, J.; Tai, G.; Guo, W. Adv. Funct. Mater. 2016, 27, 1603300.

    11. [11]

      Zheng, B.; Yu, H.-T.; Lian, Y.-F.; Xie, Y. Chem. Phys. Lett. 2016, 648, 81.  doi: 10.1016/j.cplett.2016.01.074

    12. [12]

      Wu, X.; Dai, J.; Zhao, Y.; Zhuo, Z.; Yang, J.; Zeng, X. C. ACS Nano 2012, 6, 7443.  doi: 10.1021/nn302696v

    13. [13]

      Mannix, A. J.; Zhang, Z.; Guisinger, N. P.; Yakobson, B. I.; Hersam, M. C. Nat. Nanotechnol. 2018, 13, 444.  doi: 10.1038/s41565-018-0157-4

    14. [14]

      Zhong, Q.; Kong, L.; Gou, J.; Li, W.; Sheng, S.; Yang, S.; Cheng, P.; Li, H.; Wu, K.; Chen, L. Phys. Rev. Mater. 2017, 1, 021001.  doi: 10.1103/PhysRevMaterials.1.021001

    15. [15]

      Xie, S.-Y.; Wang, Y.; Li, X.-B. Adv. Mater. 2019, 31, 1900392.  doi: 10.1002/adma.201900392

    16. [16]

      Wang, Q.; Xue, M.; Zhang, Z. Acta Phys. Chim. Sin. 2019, 35, 565(in Chinese).  doi: 10.3866/PKU.WHXB201805080

    17. [17]

      Zhong, Q.; Zhang, J.; Cheng, P.; Feng, B.; Li, W.; Sheng, S.; Li, H.; Meng, S.; Chen, L.; Wu, K. J. Phys.:Condens. Matter 2017, 29, 095002.  doi: 10.1088/1361-648X/aa5165

    18. [18]

      Li, W.; Kong, L.; Chen, C.; Gou, J.; Sheng, S.; Zhang, W.; Li, H.; Chen, L.; Cheng, P.; Wu, K. Sci. Bull. 2018, 63, 282.  doi: 10.1016/j.scib.2018.02.006

    19. [19]

      Kiraly, B.; Liu, X.; Wang, L.; Zhang, Z.; Mannix, A. J.; Fisher, B. L.; Yakobson, B. I.; Hersam, M. C.; Guisinger, N. P. ACS Nano 2019, 13, 3816.  doi: 10.1021/acsnano.8b09339

    20. [20]

      Wu, R.; Drozdov, I. K.; Eltinge, S.; Zahl, P.; Ismail-Beigi, S.; Bozovic, I.; Gozar, A. Nat. Nanotechnol. 2019, 14, 44.  doi: 10.1038/s41565-018-0317-6

    21. [21]

      Ranjan, P.; Sahu, T. K.; Bhushan, R.; Yamijala, S. S. R. K. C.; Late, D. J.; Kumar, P.; Vinu, A. Adv. Mater. 2019, 31, 1900353.  doi: 10.1002/adma.201900353

    22. [22]

      Wang, Z.-Q.; Lu, T.-Y.; Wang, H.-Q.; Feng, Y. P.; Zheng, J.-C. Front. Phys. 2019, 14, 33403.  doi: 10.1007/s11467-019-0884-5

    23. [23]

      Zhang, Z.; Yang, Y.; Gao, G.; Yakobson, B. I. Angew. Chem. Int. Ed. 2015, 54, 13022.  doi: 10.1002/anie.201505425

    24. [24]

      Zhang, Z.; Mannix, A. J.; Hu, Z.; Kiraly, B.; Guisinger, N. P.; Hersam, M. C.; Yakobson, B. I. Nano Lett. 2016, 16, 6622.  doi: 10.1021/acs.nanolett.6b03349

    25. [25]

      Penev, E. S.; Bhowmick, S.; Sadrzadeh, A.; Yakobson, B. I. Nano Lett. 2012, 12, 2441.  doi: 10.1021/nl3004754

    26. [26]

      Xiao, H.; Cao, W.; Ouyang, T.; Guo, S.; He, C.; Zhong, J. Sci. Rep. 2017, 7, 45986.  doi: 10.1038/srep45986

    27. [27]

      Adamska, L.; Sadasiyam, S.; Foley, J. J.; Darancet, P.; Sharifzadeh, S. J. Phys. Chem. C 2018, 122, 4037.  doi: 10.1021/acs.jpcc.7b10197

    28. [28]

      Penev, E. S.; Kutana, A.; Yakobson, B. I. Nano Lett. 2016, 16, 2522.  doi: 10.1021/acs.nanolett.6b00070

    29. [29]

      Jiang, H. R.; Lu, Z. H.; Wu, M. C.; Ciucci, F.; Zhao, T. S. Nano Energy 2016, 23, 97.  doi: 10.1016/j.nanoen.2016.03.013

    30. [30]

      Lebon, A.; Aguilera-del-Toro, R. H.; Gallego, L. J.; Vega, A. Int. J. Hydrogen Energy 2019, 44, 1021.  doi: 10.1016/j.ijhydene.2018.10.241

    31. [31]

      Shukla, V.; Warna, J.; Jena, N. K.; Grigoriev, A.; Ahuja, R. J. Phys. Chem. C 2017, 121, 26869.  doi: 10.1021/acs.jpcc.7b09552

    32. [32]

      Singh, Y.; Back, S.; Jung, Y. Phys. Chem. Chem. Phys. 2018, 20, 21095.  doi: 10.1039/C8CP03130D

    33. [33]

      Chen, Y.; Yu, G.; Chen, W.; Liu, Y.; Li, G.-D.; Zhu, P.; Tao, Q.; Li, Q.; Liu, J.; Shen, X.; Li, H.; Huang, X.; Wang, D.; Asefa, T.; Zou, X. J. Am. Chem. Soc. 2017, 139, 12370.  doi: 10.1021/jacs.7b06337

    34. [34]

      Shen, H.; Li, Y.; Sun, Q. Nanoscale 2018, 10, 11064.  doi: 10.1039/C8NR01855C

    35. [35]

      Rao, D.; Zhang, L.; Meng, Z.; Zhang, X.; Wang, Y.; Qiao, G.; Shen, X.; Xia, H.; Liu, J.; Lu, R. J. Mater. Chem. A 2017, 5, 2328.  doi: 10.1039/C6TA09730H

    36. [36]

      Leng, S.; Sun, X.; Yang, Y.; Zhang, R. Mater. Res. Express 2019, 6, 085504.  doi: 10.1088/2053-1591/ab1a88

    37. [37]

      Jiang, H. R.; Shyy, W.; Liu, M.; Ren, Y. X.; Zhao, T. S. J. Mater. Chem. A 2018, 6, 2107.  doi: 10.1039/C7TA09244J

    38. [38]

      Xu, S.-G.; Li, X.-T.; Zhao, Y.-J.; Liao, J.-H.; Xu, W.-P.; Yang, X.-B.; Xu, H. J. Am. Chem. Soc. 2017, 139, 17233.  doi: 10.1021/jacs.7b08680

    39. [39]

      Kistanov, A. A.; Cai, Y.; Zhou, K.; Srikanth, N.; Dmitriev, S. V.; Zhang, Y.-W. Nanoscale 2018, 10, 1403.  doi: 10.1039/C7NR06537J

    40. [40]

      Garcia-Fuente, A.; Carrete, J.; Vega, A.; Gallego, L. J. Phys. Chem. Chem. Phys. 2017, 19, 1054.  doi: 10.1039/C6CP07432D

    41. [41]

      Zhou, X.-F.; Oganov, A. R.; Wang, Z.; Popov, I. A.; Boldyrev, A. I.; Wang, H.-T. Phys. Rev. B 2016, 93, 085406.  doi: 10.1103/PhysRevB.93.085406

    42. [42]

      Gao, M.; Li, Q.-Z.; Yan, X.-W.; Wang, J. Phys. Rev. B 2017, 95, 024505.  doi: 10.1103/PhysRevB.95.024505

    43. [43]

      Zhong, H.; Huang, K.; Yu, G.; Yuan, S. Phys. Rev. B 2018, 98, 054104.  doi: 10.1103/PhysRevB.98.054104

    44. [44]

      Li, H.; Jing, L.; Liu, W.; Lin, J.; Tay, R. Y.; Tsang, S. H.; Teo, E. H. T. ACS Nano 2018, 12, 1262.  doi: 10.1021/acsnano.7b07444

    45. [45]

      Zheng, B.; Qiao, L.; Yu, H.-T.; Wang, Q.-Y.; Xie, Y.; Qu, C.-Q. Phys. Chem. Chem. Phys. 2018, 20, 15139.  doi: 10.1039/C8CP01048J

    46. [46]

      Zhang, Z.; Penev, E. S.; Yakobson, B. I. Chem. Soc. Rev. 2017, 46, 6746.  doi: 10.1039/C7CS00261K

    47. [47]

      Kwon, K. C.; Choi, K. S.; Kim, S. Y. Adv. Funct. Mater. 2012, 22, 4724.  doi: 10.1002/adfm.201200997

    48. [48]

      Jia, T.; Zheng, N.; Cai, W.; Ying, L.; Huang, F. Acta Chim. Sinica 2017, 75, 808(in Chinese).

    49. [49]

      Zhang, K.; Guan, X.; Huang, F.; Cao, Y. Acta Chim. Sinica 2012, 70, 2489(in Chinese).

    50. [50]

      Xu, J.; Chang, Y.; Gan, L.; Ma, Y.; Zhai, T. Adv. Sci. 2015, 2, 1500023.  doi: 10.1002/advs.201500023

    51. [51]

      Bezugly, V.; Kunstmann, J.; Grundkötter-Stock, B.; Frauenheim, T.; Niehaus, T.; Cuniberti, G. ACS Nano 2011, 5, 4997.  doi: 10.1021/nn201099a

    52. [52]

      Zheng, B.; Yu, H.-T.; Xie, Y.; Lian, Y.-F. ACS Appl. Mater. Interfaces 2014, 6, 19690.  doi: 10.1021/am504674p

    53. [53]

      Kumar, P. V.; Bernardi, M.; Grossman, J. C. ACS Nano 2013, 7, 1638.  doi: 10.1021/nn305507p

    54. [54]

      He, C.; Yu, Z.; Sun, L. Z.; Zhong, J. X. J. Comput. Theor. Nanosci. 2012, 9, 16.  doi: 10.1166/jctn.2012.1990

    55. [55]

      Xie, Y.; Yu, H.; Zhang, H.; Fu, H. Phys. Chem. Chem. Phys. 2012, 14, 4391.  doi: 10.1039/c2cp23964g

    56. [56]

      Kwon, K. C.; Choi, K. S.; Kim, B. J.; Lee, J. L.; Kim, S. Y. J. Phys. Chem. C 2012, 116, 26586.  doi: 10.1021/jp3069927

    57. [57]

      Huang, J. H.; Fang, J. H.; Liu, C. C.; Chu, C. W. ACS Nano 2011, 5, 6262.  doi: 10.1021/nn201253w

    58. [58]

      Hao, J.-H.; Wang, Z.-J.; Wang, Y.-F.; Yin, Y.-H.; Jiang, R.; Jin, Q.-H. Solid State Sci. 2015, 50, 69.  doi: 10.1016/j.solidstatesciences.2015.10.015

    59. [59]

      Yi, T.; Zheng, B.; Yu, H.; Xie, Y. Chem. Res. Chin. Univ. 2017, 33, 631.  doi: 10.1007/s40242-017-7038-5

    60. [60]

      Zheng, B.; Xie, Y.; Deng, Y.-Y.; Wang, Z.-Q.; Lou, Y.-Q.; Qian, Y.-Y.; He, J.; Yu, H.-T. Adv. Theory Simul. 2020, 1900249.

    61. [61]

      Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.  doi: 10.1103/PhysRevLett.77.3865

    62. [62]

      Grimme, S. J. Comput. Chem. 2006, 27, 1787.  doi: 10.1002/jcc.20495

    63. [63]

      Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13, 5188.  doi: 10.1103/PhysRevB.13.5188

    64. [64]

      Olsen, R. A.; Kroes, G. J.; Henkelman, G.; Arnaldsson, A.; Jónsson, H. J. Chem. Phys. 2004, 121, 9776.  doi: 10.1063/1.1809574

    65. [65]

      Henkelman, G.; Jonsson, H. J. Chem. Phys. 2000, 113, 9978.  doi: 10.1063/1.1323224

    66. [66]

      Delley, B. J. Chem. Phys. 1990, 92, 508.  doi: 10.1063/1.458452

    67. [67]

      Tang, H.; Ismail-Beigi, S. Phys. Rev. Lett. 2007, 99, 115501.  doi: 10.1103/PhysRevLett.99.115501

    68. [68]

      Banerjee, S.; Periyasamy, G.; Pati, S. K. J. Mater. Chem. A 2014, 2, 3856.  doi: 10.1039/c3ta14041e

    69. [69]

      Zhang, X.; Hu, J.; Cheng, Y.; Yang, H. Y.; Yao, Y.; Yang, S. A. Nanoscale 2016, 8, 15340.  doi: 10.1039/C6NR04186H

    70. [70]

      Jiang, H. R.; Lu, Z. H.; Wu, M. C.; Ciucci, F.; Zhao, T. S. Nano Energy 2016, 23, 97.  doi: 10.1016/j.nanoen.2016.03.013

    71. [71]

      Jin, K. H.; Choi, S. M.; Jhi, S. H. Phys. Rev. B 2010, 82, 033414.

    72. [72]

      Zhang, H. ACS Nano 2015, 9, 9451.  doi: 10.1021/acsnano.5b05040

    73. [73]

      An, H.; Liu, C.-S.; Zeng, Z. Phys. Rev. B 2011, 83, 115456.  doi: 10.1103/PhysRevB.83.115456

    74. [74]

      Li, Y.; Zhou, G.; Li, J.; Gu, B.-L.; Duan, W. J. Phys. Chem. C 2008, 112, 19268.  doi: 10.1021/jp807156g

    75. [75]

      Wang, Y. S.; Wang, F.; Li, M.; Xu, B.; Sun, Q.; Jia, Y. Appl. Surf. Sci. 2012, 258, 8874.  doi: 10.1016/j.apsusc.2012.05.107

    76. [76]

      Liu, F.; Shen, C.; Su, Z.; Ding, X.; Deng, S.; Chen, J.; Xu, N.; Gao, H. J. Mater. Chem. 2010, 20, 2197.  doi: 10.1039/b919260c

    77. [77]

      Bae, G.; Cha, J.; Lee, H.; Park, W.; Park, N. Carbon 2012, 50, 851.  doi: 10.1016/j.carbon.2011.09.044

    78. [78]

      Michaelson, H. B. J. Appl. Phys. 1977, 48, 5.  doi: 10.1063/1.323361

    79. [79]

      Lorenzo, M.; Escher, C.; Latychevskaia, T.; Fink, H.-W. Nano Lett. 2018, 18, 3421.  doi: 10.1021/acs.nanolett.8b00359

    80. [80]

      Wang, G.; Shen, X.; Yao, J.; Park, J. Carbon 2009, 47, 2049.  doi: 10.1016/j.carbon.2009.03.053

    81. [81]

      Pan, D.; Wang, S.; Zhao, B.; Wu, M.; Zhang, H.; Wang, Y.; Jiao, Z. Chem. Mater. 2009, 21, 3136.  doi: 10.1021/cm900395k

    82. [82]

      Bhardwaj, T.; Antic, A.; Pavan, B.; Barone, V.; Fahlman, B. D. J. Am. Chem. Soc. 2010, 132, 12556.  doi: 10.1021/ja106162f

    83. [83]

      Fan, X.; Zheng, W. T.; Kuo, J.-L. ACS Appl. Mater. Interfaces 2012, 4, 2432.  doi: 10.1021/am3000962

    84. [84]

      Er, S.; de Wijs, G. A.; Brocks, G. J. Phys. Chem. C 2009, 113, 18962.  doi: 10.1021/jp9077079

    85. [85]

      Peng, X.; Tang, F.; Copple, A. J. Phys.:Condens. Matter 2012, 24, 075501.  doi: 10.1088/0953-8984/24/7/075501

    86. [86]

      Shan, B.; Cho, K. Phys. Rev. Lett. 2005, 94, 236602.  doi: 10.1103/PhysRevLett.94.236602

    87. [87]

      Leung, T. C.; Kao, C. L.; Su, W. S.; Feng, Y. J.; Chan, C. T. Phys. Rev. B 2003, 68, 195408.  doi: 10.1103/PhysRevB.68.195408

  • 加载中
    1. [1]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    2. [2]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    3. [3]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    4. [4]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    5. [5]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    6. [6]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    7. [7]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    8. [8]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    9. [9]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    10. [10]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    11. [11]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    12. [12]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    13. [13]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    14. [14]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    15. [15]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    16. [16]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    17. [17]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    18. [18]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    19. [19]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    20. [20]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

Metrics
  • PDF Downloads(8)
  • Abstract views(1931)
  • HTML views(315)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return