Citation: Li Wei, Ran Tiecheng, Zhang Yu, He Wei, Ma Jifei, Wang Qisheng, Zhang Jichao, Zhu Ying. SiO2-Mediated High-efficiency Enrichment of 5 nm Gold Nanoparticles and Their Catalytic Activity[J]. Acta Chimica Sinica, ;2020, 78(2): 170-176. doi: 10.6023/A19120445 shu

SiO2-Mediated High-efficiency Enrichment of 5 nm Gold Nanoparticles and Their Catalytic Activity

  • Corresponding author: Zhang Jichao, zjchao@sinap.ac.cn
  • These authors contributed equally to this work
  • Received Date: 12 December 2019
    Available Online: 13 February 2020

    Fund Project: the China Postdoctoral Science Foundation 2018M632189the Youth Innovation Promotion Association of CAS 2012205the Shanghai Sailing Program 17YF1423600Project supported by the National Natural Science Foundation of China (Nos. 11705270, 11675251, 21390414), the Shanghai Sailing Program (No. 17YF1423600), the China Postdoctoral Science Foundation (Nos. 2018M632189, 2018M640340) and the Youth Innovation Promotion Association of CAS (Nos. 2012205, 2016236)the National Natural Science Foundation of China 11705270the Youth Innovation Promotion Association of CAS 2016236the National Natural Science Foundation of China 11675251the China Postdoctoral Science Foundation 2018M640340the National Natural Science Foundation of China 21390414

Figures(7)

  • Gold nanoparticles (Au NPs), smaller than 10 nm, have a high ratio of surface area to volume, and therefore have excellent catalytic activity. They are widely used in the field of catalysis. The concentration of small particle sized Au NPs synthesized by traditional wet chemical method is too low, and further enrichment is needed in order to meet the experimental requirements. However, small particle sized Au NPs are prone to aggregate during the concentration process and lose the catalytic activity. It is a challenge to concentrate the small Au NPs while keeping their catalytic activities. In this work, 500 nm silanized SiO2 particles which are covered by positive charges were used to adsorb 5 nm Au NPs through electrostatic interaction, and self-assemble to form Au NPs@SiO2 composite at room temperature. The loaded efficiency of Au NPs can reach 99.5% and the amount of Au NPs particles loaded on each SiO2 particle reached 800~1000, which greatly increased the effective concentration of Au NPs in the local area. Moreover, Au NPs enriched on the surface of SiO2 were bound by electrostatic action and uniformly distributed on the surface of SiO2 without agglomeration. The results showed that the catalytic activity of AuNPs@SiO2 was greatly enhanced by increasing the local concentration of AuNPs, and the catalytic activity was 3 times higher than that of AuNPs at the same concentration. After 5 times of reuse, the catalytic conversion efficiency remained at about 80%. The Au NPs@SiO2 composite could be preserved for one month with the same structure and catalytic activity. Moreover, by adjusting the molar ratio of SiO2 and Au NPs, the assembly density of Au NPs at SiO2 can be precisely regulated, and the catalytic activity of Au NPs@SiO2 can also be changed precisely. This work provides a simple method for preparing small sized Au NPs with high concentration and greatly improves the catalytic activity of Au NPs. The method has wide application in enriching other small sized nanoparticles.
  • 加载中
    1. [1]

      Jacinto, M. J.; Kiyohara, P. K.; Masunaga, S. H.; Jardim, R. F.; Rossi, L. M. Appl. Catal. A:Gene. 2008, 338, 52.  doi: 10.1016/j.apcata.2007.12.018

    2. [2]

      Bian, Z.; Tachikawa, T.; Zhang, P.; Fujitsuka, M.; Majima, T. J. Am. Chem. Soc. 2014, 136, 458.  doi: 10.1021/ja410994f

    3. [3]

      Pattadar, D. K.; Zamborini, F. P. J. Am. Chem. Soc. 2018, 140, 14126.  doi: 10.1021/jacs.8b06830

    4. [4]

      Mondal, B.; Mukherjee, P. S. J. Am. Chem. Soc. 2018, 140, 12592.  doi: 10.1021/jacs.8b07767

    5. [5]

      Kale, M. J.; Avanesian, T.; Christopher, P. ACS Catal. 2013, 4, 116.

    6. [6]

      Dong, H.; Zhu, M.; Yoon, J. A.; Gao, H.; Jin, R.; Matyjaszewski, K. J. Am. Chem. Soc. 2008, 130, 12852.  doi: 10.1021/ja8038097

    7. [7]

      Zhang, J.; Wang, H.; Wang, L.; Ali, S.; Wang, C.; Wang, L.; Meng, X.; Li, B.; Su, D. S.; Xiao, F. S. J. Am. Chem. Soc. 2019, 141, 2975.  doi: 10.1021/jacs.8b10864

    8. [8]

      Balogh, D.; Tel-Vered, R.; Freeman, R.; Willner, I. J. Am. Chem. Soc. 2011, 133, 6533.  doi: 10.1021/ja2009899

    9. [9]

      Li, Y.; Lin, Z.; Li, R.-Z.; Liu, X. Acta Chim. Sinica 2012, 70, 1304(in Chinese).
       

    10. [10]

      Gittins, D. I.; Caruso, F. ChemPhysChem 2002, 3, 110.  doi: 10.1002/1439-7641(20020118)3:1<110::AID-CPHC110>3.0.CO;2-Q

    11. [11]

      Cheng, Z.; Ji, G.; Wang, F.; Zhang, X.; Yang, Y.; Li, J.; Wen, W.; Gao, X. Nucl. Tech. 2017, 40, 060101.

    12. [12]

      Qin, W.; Peng, T.; Gao, Y.; Wang, F.; Hu, X.; Wang, K.; Shi, J.; Li, D.; Ren, J.; Fan, C. Angew. Chem. Int. Ed. 2017, 56, 515.  doi: 10.1002/anie.201609121

    13. [13]

      Su, S.; Zou, M.; Zhao, H.; Yuan, C.; Xu, Y.; Zhang, C.; Wang, L.; Fan, C.; Wang, L. Nanoscale 2015, 7, 19129.  doi: 10.1039/C5NR05614D

    14. [14]

      Li, K.; Wang, K.; Qin, W.; Deng, S.; Li, D.; Shi, J.; Huang, Q.; Fan, C. J. Am. Chem. Soc. 2015, 137, 4292.  doi: 10.1021/jacs.5b00324

    15. [15]

      Zhang, Q.; Wu, S.-Y.; He, M.-W.; Zhang, L.; Liu, Y.; Li, J.-H.; Song, X.-M. Acta Chim. Sinica 2012, 70, 2213(in Chinese).  doi: 10.7503/cjcu20111157
       

    16. [16]

      Chen, N.; Wei, M.; Sun, Y.; Li, F.; Pei, H.; Li, X.; Su, S.; He, Y.; Wang, L.; Shi, J.; Fan, C.; Huang, Q. Small 2014, 10, 368.  doi: 10.1002/smll.201300903

    17. [17]

      Yang, X.; Li, J.; Pei, H.; Li, D.; Zhao, Y.; Gao, J.; Lu, J.; Shi, J.; Fan, C.; Huang, Q. Small 2013, 9, 2844.  doi: 10.1002/smll.201202772

    18. [18]

      Hu, Y.; Cheng, H.; Zhao, X.; Wu, J.; Muhammad, F.; Lin, S.; He, J.; Zhou, L.; Zhang, C.; Deng, Y.; Wang, P.; Zhou, Z.; Nie, S.; Wei, H. ACS Nano 2017, 11, 5558.  doi: 10.1021/acsnano.7b00905

    19. [19]

      Mi, L.; Wen, Y.; Pan, D.; Wang, Y.; Fan, C.; Hu, J. Small 2009, 5, 2597.  doi: 10.1002/smll.200901147

    20. [20]

      Liu, M.; Wang, K.; Chen, N.; Wang, L. Nucl. Tech. 2015, 38, 090501.

    21. [21]

      Zhang, Z.-X.; Luan, W.-X.; Zhang, C.-Y.; Liu, Y.-J. Acta Chim. Sinica 2017, 75, 403(in Chinese).  doi: 10.7503/cjcu20160717
       

    22. [22]

      Bo, Y.; Yang, Q.; Meng, Q.; Hu, Y.; Huang, S.-S. Acta Chim. Sinica 2010, 68, 672(in Chinese).
       

    23. [23]

      Wang, C.; Zhang, H.; Zeng, D.; San, L.; Mi, X. Chin. J. Chem. 2016, 34, 299.  doi: 10.1002/cjoc.201500839

    24. [24]

      Ma, X.-P.; Lun, N.; Li, X.; Wen, S.-L.; Wu, Z.-P. J. Chin. Electr. Microsc. Soc. 2004, 23, 379(in Chinese).  doi: 10.3969/j.issn.1000-6281.2004.04.081

    25. [25]

      Kim, Y.; Jo, A.; Ha, Y.; Lee, Y.; Lee, D.; Lee, Y.; Lee, C. Electro-analysis 2018, 30, 2861.  doi: 10.1002/elan.201800555

    26. [26]

      Hu, S.; Liu, X.; Wang, C.; Camargo, P. H. C.; Wang, J. ACS Appl. Mater. Interfaces 2019, 11, 17444.  doi: 10.1021/acsami.9b03879

    27. [27]

      Nehra, K.; Pandian, S. K.; Byram, C.; Moram, S. S. B.; Soma, V. R. J. Phys. Chem. C 2019, 123, 16210.  doi: 10.1021/acs.jpcc.9b03086

    28. [28]

      Wang, C.; Shi, Y.; Dan, Y. Y.; Nie, X. G.; Li, J.; Xia, X. H. Chem. Eur. J. 2017, 23, 6717.  doi: 10.1002/chem.201605380

    29. [29]

      Wang. L.-C.; Fang, Z.; Huang, X.-S.; Cao, Y. Pet. Tech. 2007, 36, 869(in Chinese).  doi: 10.3321/j.issn:1000-8144.2007.09.001

    30. [30]

      Zhang, P.; Qiao, Z. A.; Jiang, X.; Veith, G. M.; Dai, S. Nano Lett. 2015, 15, 823.  doi: 10.1021/nl504780j

    31. [31]

      Fuerte, A.; Corma, A.; Iglesias, M.; Morales, E.; Sánchez, F. Catal. Lett. 2005, 101, 99.  doi: 10.1007/s10562-004-3756-7

    32. [32]

      Amin, M. A.; Fadlallah, S. A.; Alosaimi, G. S.; Ahmed, E. M.; Mostafa, N. Y.; Roussel, P.; Szunerits, S.; Boukherroub, R. ACS Appl. Mater. Interfaces 2017, 9, 30115.  doi: 10.1021/acsami.7b07611

    33. [33]

      Brust, M.; Gordillo, G. J. J. Am. Chem. Soc. 2012, 134, 3318.  doi: 10.1021/ja2096514

    34. [34]

      Thangavel, S.; Ramaraj, R. J. Phys. Chem. C 2008, 112, 19825.  doi: 10.1021/jp804310u

    35. [35]

      Maduraiveeran, G.; Ramaraj, R. Electrochem. Commun. 2007, 9, 2051.  doi: 10.1016/j.elecom.2007.05.021

    36. [36]

      Zhou, X.; Xu, W.; Liu, G.; Panda, D.; Chen, P. J. Am. Chem. Soc. 2009, 132, 136.

    37. [37]

      Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R. J. Am. Chem. Soc. 1994, 7.

    38. [38]

      Kimling, J.; Maier, M.; Okenve, B.; Kotaidis, V.; Ballot, H.; Plech, A. J. Phys. Chem. B 2006, 110, 15700.  doi: 10.1021/jp061667w

    39. [39]

      Manna, A.; Chen, P.-L.; Akiyama, H.; Wei, T.-X.; Tamada, K.; Knoll, W. Chem. Mater. 2003, 15, 20.  doi: 10.1021/cm0207696

    40. [40]

      Turkevich, J.; Stevenson, P. C.; Hillier, J. Faraday. Discuss. Soc. 1951, 11, 55.  doi: 10.1039/df9511100055

    41. [41]

      Perrault, S. D.; Chan, W. C. W. J. Am. Chem. Soc. 2009, 131, 17042.  doi: 10.1021/ja907069u

    42. [42]

      Zhao, Y.; Huang, Y.; Zhu, H.; Zhu, Q.; Xia, Y. J. Am. Chem. Soc. 2016, 138, 16645.  doi: 10.1021/jacs.6b07590

    43. [43]

      Chegel, V.; Rachkov, O.; Lopatynskyi, A.; Ishihara, S.; Yanchuk, I.; Nemoto, Y.; Hill, J. P.; Ariga, K. J. Phys. Chem. C 2012, 116, 2683.  doi: 10.1021/jp209251y

    44. [44]

      Zakaria, H. M.; Shah, A.; Konieczny, M.; Hoffmann, J. A.; Nijdam, A. J.; Reeves, M. E. Langmuir 2013, 29, 7661.  doi: 10.1021/la400582v

    45. [45]

      Shi, L.; Jing, C.; Ma, W.; Li, D.-W.; Halls, J. E.; Marken, F.; Long, Y.-T. Angew. Chem. Int. Ed. 2013, 52, 6011.  doi: 10.1002/anie.201301930

    46. [46]

      Zheng, X.; Liu, Q.; Jing, C.; Li, Y.; Li, D.; Luo, W.; Wen, Y.; He, Y.; Huang, Q.; Long, Y.-T.; Fan, C. Angew. Chem. Int. Ed. 2011, 50, 11994.  doi: 10.1002/anie.201105121

    47. [47]

      Wang, H.-S.; Zhao, W.-X. Chin. J. Org. Chem. 2013, 33, 1822(in Chinese).

    48. [48]

      Xiao, J.-J.; Qiu, Z.-M.; He, W.-J.; Du, C.-C.; Zhou, W. Chin. J. Org. Chem. 2016, 36, 987(in Chinese).

    49. [49]

      Choi, D.; Ham, S.; Jang, D.-J. Mater. Res. Bull. 2019, 120, 110578.  doi: 10.1016/j.materresbull.2019.110578

    50. [50]

      Cao, N.; Zeng, P.; Zhao, F.; Zeng, B. Talanta 2019, 204, 402.  doi: 10.1016/j.talanta.2019.06.030

    51. [51]

      Li, L.; Si, Y.; He, B.; Li, J. Talanta 2019, 205, 120116.  doi: 10.1016/j.talanta.2019.120116

  • 加载中
    1. [1]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    2. [2]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    3. [3]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    4. [4]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    5. [5]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    6. [6]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    7. [7]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    8. [8]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    9. [9]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    10. [10]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    11. [11]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    12. [12]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    13. [13]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    14. [14]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    15. [15]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    16. [16]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    17. [17]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    18. [18]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    19. [19]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    20. [20]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

Metrics
  • PDF Downloads(11)
  • Abstract views(711)
  • HTML views(78)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return