Citation: Zhai Yali, Xu Wenjuan, Meng Xiangru, Hou Hongwei. Adjusting the Third-Order Nonlinear Optical Switch Performance Based on Azobenzene Derivatives[J]. Acta Chimica Sinica, ;2020, 78(3): 256-262. doi: 10.6023/A19120427 shu

Adjusting the Third-Order Nonlinear Optical Switch Performance Based on Azobenzene Derivatives

  • Corresponding author: Meng Xiangru, mxr@zzu.edu.cn Hou Hongwei, houhongw@zzu.edu.cn
  • Received Date: 16 December 2019
    Available Online: 5 March 2020

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21671174), the Zhongyuan Thousand Talents Project and the Natural Science Foundation of Henan Province (No. 182300410008)the National Natural Science Foundation of China 21671174the Zhongyuan Thousand Talents Project and the Natural Science Foundation of Henan Province 182300410008

Figures(7)

  • The photo-controllable third-order nonlinear optical (NLO) switches have drawn ever-increasing attention due to considerable research potential in the emerging field of nonlinear optics. A class of materials, which contain photosensitive groups but cannot express directly switching properties under light conditions, can also exhibit the characteristics of excellent photo-controllable NLO switches after external regulation. Azobenzene is a kind of classic photo-isomerized molecule and has good π coplanar property and excellent electron channel, which can engender third-order NLO response under push and pull electron action. It is a feasible strategy to design photo-controlled NLO switch materials by introducing azo groups. Nevertheless, the trans-cis isomerization behaviors of some azobenzene derivatives are interfered by other groups or external factors, further inhibiting the conversion of photo-controllable third-order NLO properties. Once these external interference factors are found and removed, the photo-controllable NLO behaviors of such azobenzene derivatives will be opened. In our work, a special azobenzene derivative was synthesized and reported, which was unable to produce cis-trans isomerization due to the H+ effect of self-dissociation, and the H+ effect could be shield by introducing organic groups or bases. The adjusted materials can easily undergo reversible cis-trans isomerization reaction, and the Z-scan test shows the complete inversions of third-order NLO properties before and after UV irradiation. The adjusted materials in trans configuration show the reverse saturation absorption (RSA) and self-defocusing properties. After UV irradiation, the materials convert into cis configuration and exhibit saturation absorption (SA) and strong self-focusing behaviors. To gain a deeper understanding of the light-adjusted third-order NLO switch behaviors, density functional theory (DFT) calculations of (CH3)2L were carried out. For trans-(CH3)2L, HOMO and LUMO are mainly localized on the azobenzene unit, where π-π* transition between the two orbitals is displayed. The azobenzene unit in the trans-(CH3)2L is considered to have considerable contribution to the generation of third-order nonlinear-ity. For cis-(CH3)2L, the electron cloud density of HOMO is mainly populated on the azobenzene unit, whereas the electron cloud density distribution of LUMO appears on the entire molecule, suggesting significant intramolecular charge transfer (ICT) from azobenzene to the entire molecule. The effect of ICT in the cis structure dominants the generation of third-order nonlinearity. The remarkable third-order NLO transformation result from the rearrangement of the electronic structures, which makes them generate different response mechanisms under the laser stimulation.
  • 加载中
    1. [1]

      Delaire, A. J.; Nakatani, K. Chem. Rev. 2000, 100, 1817.  doi: 10.1021/cr980078m

    2. [2]

      Green, K. A.; Cifuentes, M. P.; Corkery, T. C.; Samoc, M.; Humphrey, M. G. Angew. Chem., Int. Ed. 2009, 48, 7867.  doi: 10.1002/anie.200903027

    3. [3]

      Castet, F.; Rodriguez, V.; Pozzo, J. L.; Ducasse, L.; Plaquet, A.; Champagne, B. Acc. Chem. Res. 2013, 46, 2656.  doi: 10.1021/ar4000955

    4. [4]

      Xu, W. J.; Shao, Z. C.; Han. Y. B.; Wang, W.; Song, Y. L.; Hou, H. W. Dyes Pigm. 2018, 152, 171.  doi: 10.1016/j.dyepig.2018.01.056

    5. [5]

      Green, K. A.; Cifuentes, M. P.; Samoc, M.; Humphrey, M. G. Coord. Chem. Rev. 2011, 255, 2530.  doi: 10.1016/j.ccr.2011.02.021

    6. [6]

      Champagne, B.; Plaquet, A.; Pozzo, J. L.; Rodriguez, V.; Castet, F. J. Am. Chem. Soc. 2012, 134, 8101.  doi: 10.1021/ja302395f

    7. [7]

      Feng, Q.; Li, Y. Y.; Shi, G.; Wang, L. L.; Zhang, W. J.; Li, K.; Hou, H. W.; Song, Y. L. J. Mater. Chem. C 2016, 4, 8552.  doi: 10.1039/C6TC01549B

    8. [8]

      Beaujean, P.; Bondu, F.; Plaquet, A.; Garcia-Amorós, J.; Cusido, J.; Raymo, F. M.; Castet, F.; Rodriguez, V.; Champagne, B. J. Am. Chem. Soc. 2016, 138, 5052.  doi: 10.1021/jacs.5b13243

    9. [9]

      Boixel, J.; Guerchais, V.; Bozec, H. L.; Chantzis, A.; Jacquemin, D.; Colombo, A.; Dragonetti, C.; Marinotto, D.; Roberto, D. Chem. Commun. 2015, 51, 7805.  doi: 10.1039/C5CC01893E

    10. [10]

      Dhammika Bandara, H. M.; Burdette, S. C. Chem. Soc. Rev. 2012, 41, 1809.  doi: 10.1039/C1CS15179G

    11. [11]

      Chu, Z.; Han, Y.; Bian, T.; De, S.; Král, P.; Klajn, R. J. Am. Chem. Soc. 2019, 141, 1949.  doi: 10.1021/jacs.8b09638

    12. [12]

      Natali, M.; Giordani, S. Chem. Soc. Rev. 2012, 41, 4010.  doi: 10.1039/c2cs35015g

    13. [13]

      Zakrevskyy, Y.; Richter, M.; Zakrevska, S.; Lomadze, N.; von Klitzing, R. Adv. Funct. Mater. 2012, 22, 5000.  doi: 10.1002/adfm.201200617

    14. [14]

      Chen, L.; Tang, X.; Jia, K.; Tang, X. Z. Chin. J. Org. Chem. 2016, 36, 2197.

    15. [15]

      Xu, W. J.; Wang, W.; Li, J. X.; Wu, Q.; Zhao, Y. J.; Hou, H. W.; Song, Y. L. Dyes Pigm. 2019, 160, 1  doi: 10.1016/j.dyepig.2018.07.046

    16. [16]

      Chen, L.; Bo, S. H.; He, Y. L.; Chen, Z.; Liu, X. H.; Zhen, Z. Chin. J. Org. Chem. 2017, 37, 2263.

    17. [17]

      Qu, M.; Liu, M. M.; Liu, J.; Zhang, X. M. Chin. J. Chem. 2014, 32, 1259.  doi: 10.1002/cjoc.201400424

    18. [18]

      Xie, Q.; Shao, Z. C.; Zhao, Y. J.; Yang, L. P.; Wu, Q.; Xu, W. J.; Li, K.; Song, Y. L.; Hou, H. W. Dyes Pigm. 2019, 170, 107599.  doi: 10.1016/j.dyepig.2019.107599

    19. [19]

      Li, Q. Y.; Chi, Z.; Li, T. F.; Ran, X.; Guo, L. J. Opt. Express 2017, 25, 11503.  doi: 10.1364/OE.25.011503

    20. [20]

      Liaros, N.; Couris, S.; Maggini, L.; Leo, F. D.; Cattaruzza, F.; Aurisicchio, C.; Bonifazi, D. ChemPhysChem 2013, 14, 2961.  doi: 10.1002/cphc.201300420

    21. [21]

      Szymański, W.; Beierle, J. M.; Kistemaker, H. A. V.; Velema, W. A.; Feringa, B. L. Chem. Rev. 2013, 113, 6114.  doi: 10.1021/cr300179f

    22. [22]

      Xue, X. N.; Wang, H. R.; Han, Y. B.; Hou, H. W. Dalton Trans 2018, 47, 13.  doi: 10.1039/C7DT03989A

    23. [23]

      Lovrien, R.; Pesheck, P.; Tisel, W. J. Am. Chem. Soc. 1974, 96, 244.  doi: 10.1021/ja00808a039

    24. [24]

      Klotz, I. M.; Fiess, H. A.; Chen Ho, J. Y.; Mellody, M. J. Am. Chem. Soc. 1954, 76, 5136.  doi: 10.1021/ja01649a041

    25. [25]

      Nihei, M.; Kurihara, M.; Mizutani, J.; Nishihara, H. J. Am. Chem. Soc. 2003, 125, 2964.  doi: 10.1021/ja028080p

    26. [26]

      Beharry, A. A.; Woolley, G. A. Chem. Soc. Rev. 2011, 40, 4422.  doi: 10.1039/c1cs15023e

    27. [27]

      Wu, Z.; Xue, R.; Xie, M.; Wang, X.; Liu, Z.; Drechsler, M.; Huang, J.; Yan, Y. J. Phys. Chem. Lett. 2018, 9, 163.  doi: 10.1021/acs.jpclett.7b03060

    28. [28]

      Joshi, N. K.; Fuyuki, M.; Wada, A. J. Phys. Chem. B 2014, 118, 1891.  doi: 10.1021/jp4125205

    29. [29]

      Wettermark, G.; Langmuir, M. E.; Anderson, D. G. J. Am. Chem. Soc. 1965, 87, 476.  doi: 10.1021/ja01081a014

    30. [30]

      Beharry, A. A.; Sadovski, O.; Woolley, G. A. J. Am. Chem. Soc. 2011, 133, 19684.  doi: 10.1021/ja209239m

    31. [31]

      Zhou, H.; Xue, C.; Weis, P.; Suzuki, Y.; Huang, S.; Koynov, K.; Auernhammer, G. K.; Berger, R.; Butt, H. J.; Wu, S. Nat. Chem. 2017, 9, 145.  doi: 10.1038/nchem.2625

    32. [32]

      Zhang, W.; He, C. Y.; Xiao, X. W.; Song W. N.; Gao, Y. C.; Chen, Z. M.; Dong, Y. L.; Wu, Y. Q.; Wang, Q. Chin. J. Chem. 2016, 34, 1006.  doi: 10.1002/cjoc.201600406

    33. [33]

      Liang, P. X.; Mi, Y. S.; Duan, J. S.; Yang, Z.; Wang, D.; Cao, H.; He, W. L.; Yang, H. Chin. J. Chem. 2016, 34, 381.  doi: 10.1002/cjoc.201500144

    34. [34]

      Niu, R. J.; Zhou, W. F.; Liu, Y.; Yang, J. Y.; Zhang, W. H.; Lang, J. P.; Young, D. J. Chem. Commun. 2019, 55, 4873.  doi: 10.1039/C9CC01363F

    35. [35]

      Zhang, C.; Song, Y. L.; Wang, X. Coord. Chem. Rev. 2007, 251, 111.  doi: 10.1016/j.ccr.2006.06.007

    36. [36]

      Chen, Q. F.; Zhao, X.; Liu, Q.; Jia, J. D.; Qiu, X. T.; Song, Y. L.; Young, D. J.; Zhang, W. H.; Lang, J. P. Inorg. Chem. 2017, 56, 5669.  doi: 10.1021/acs.inorgchem.7b00261

    37. [37]

      Zhao, Y. J.; Li, H. H.; Shao, Z. C.; Xu, W. J.; Meng, X. R.; Song, Y. L.; Hou, H. W. Inorg. Chem. 2019, 58, 4792.  doi: 10.1021/acs.inorgchem.8b03154

    38. [38]

      Li, J. L.; Ding, G. H.; Niu, Y. Y.; Wu, L. Y.; Duan, H. Y.; Feng, F. J.; He, W. J. Chin. J. Org. Chem. 2018, 38, 931.  doi: 10.6023/cjoc201709001

    39. [39]

      Wu, X. Z.; Xiao, J. C.; Sun, R.; Jin, T. X.; Yang, J. Y.; Shi, G.; Wang, Y. X.; Zhang, X. R.; Song, Y. L. Adv. Opt. Mater. 2017, 5, 1600712.  doi: 10.1002/adom.201600712

    40. [40]

      Hou, H. W.; Wei, Y. L.; Song, Y. L.; Mi, L. W.; Tang, M. S.; Li, L. K.; Fan, Y. T. Angew. Chem., Int. Ed. 2005, 44, 6067.  doi: 10.1002/anie.200463004

    41. [41]

      Liang, P. X.; Li, Z. Q.; Mi, Y. S.; Yang, Z.; Wang, D.; Cao, H.; He, W. L.; Yang, H. J. Electron. Mater. 2015, 44, 2883.  doi: 10.1007/s11664-015-3736-2

    42. [42]

      Xiao, Z. G.; Shi, Y. F.; Sun, R.; Ge, J. F.; Li, Z. G.; Fang, Y.; Wu, X. Z.; Yang, J. Y.; Zhao, M. G.; Song, Y. L. J. Mater. Chem. C 2016, 4, 4647.  doi: 10.1039/C5TC04047G

    43. [43]

      Kanoo, P.; Matsuda, R.; Sato, H.; Li, L.; Jeon, H. J.; Kitagawa, S. Inorg. Chem. 2013, 52, 10735.  doi: 10.1021/ic401924d

  • 加载中
    1. [1]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    2. [2]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    3. [3]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    4. [4]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    5. [5]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    6. [6]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    7. [7]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    8. [8]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    9. [9]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    10. [10]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    11. [11]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    12. [12]

      Xiaolei Jiang Fangdong Hu . Exploring the Mirror World in Organic Chemistry: the Teaching Design of “Enantiomers” from the Perspective of Curriculum and Ideological Education. University Chemistry, 2024, 39(10): 174-181. doi: 10.3866/PKU.DXHX202402052

    13. [13]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    14. [14]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    15. [15]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    16. [16]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

    17. [17]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    18. [18]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    19. [19]

      Yuhang Jiang Weijie Liu Jiaqi Cai Jiayue Chen Yanping Ren Pingping Wu Liulin Yang . A Journey into the Science and Art of Sugar: “Dispersion of Light and Optical Rotation of Matter” Science Popularization Experiment. University Chemistry, 2024, 39(9): 288-294. doi: 10.12461/PKU.DXHX202401054

    20. [20]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

Metrics
  • PDF Downloads(14)
  • Abstract views(2244)
  • HTML views(394)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return