Citation: Li Zhewei, Wang Qianyue, Pu Min, Yang Zuoyin, Lei Ming. Theoretical Study on Nitrogenous Heterocyclic Assisted Aldimine Condensation[J]. Acta Chimica Sinica, ;2020, 78(5): 437-443. doi: 10.6023/A19110413 shu

Theoretical Study on Nitrogenous Heterocyclic Assisted Aldimine Condensation

  • Corresponding author: Pu Min, pumin@mail.buct.edu.cn Lei Ming, leim@mail.buct.edu.cn
  • Received Date: 26 November 2019
    Available Online: 8 April 2020

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21672018), the State Key Laboratory of Physical Chemistry of Solid Surfaces (Xiamen University) (No. 201811) and the Fundamental Research Funds for the Central Universities (No. XK1802-6)the State Key Laboratory of Physical Chemistry of Solid Surfaces (Xiamen University) 201811the National Natural Science Foundation of China 21672018the Fundamental Research Funds for the Central Universities XK1802-6

Figures(7)

  • Imines and the intermediate methylamine by the aldimine condensation of primary amines with aldehydes have a potential application in the field of pharmacy, life science, catalysis, material science, etc. In this reaction, the hydrogen transfer in the dehydration step normally prefers the pathway via a water bridge in aqueous solution or a directly dehydration in organic solvent. It is a different mechanism for the aldimine condensation of amine owning neighbouring nitrogenous heterocycle. Herein we investigated the mechanism of aldimine condensation of primary amine containing nitrogenous heterocycle with aldehyde in dichloromethane under acidic conditions using density functional theory (DFT) at ωB97X-D/6-31++G(d, p) level, the calculated results show that compared with specific acid catalysis, the heterocyclic nitrogen with stronger basicity is easier to be protonated than the oxygen of carbonyl group. The whole reaction proceeds two hydrogen transfer steps via nitrogen bridge owning an energy span of 13.08 kcal/mol. The rate-determing step is the second hydrogen transfer step. In each step the heterocyclic nitrogen is a bridge to assist the hydrogen transfer, which could reduce the free energy barrier of the aldimine condensation. It is unfavorable for the reaction pathway via directly hydrogen transfer with a four-membered ring transition state owning a free energy barrier of 32.73 kcal/mol, and the reaction pathway via a water bridge is not located. Meanwhile, the energy barriers increased for systems in which the N atom in heterocycle of primary amine is replaced by P/As atoms. The rate-determining step changes from the second hydrogen transfer step for N system to the first hydrogen transfer step for As system. The position effect of adjacent nitrogen atom is also investigated. The γ position owns the highest reactivity of the aldimine condensation, which implies that the ring strain plays an important role in the aldimine condensation of primary amine containing nitrogenous heterocycle with aldehyde. This theoretical study may provide insights to unveil the nature of aldimine condensation of aldehyde and primary amine owning nitrogeneous heterocycle.
  • 加载中
    1. [1]

      Schiff, H. Justus Liebigs Ann. Chem. 1864, 131, 118.  doi: 10.1002/jlac.18641310113

    2. [2]

      Leth, L. A.; Naesborg, L.; Reyes-Rodriguez, G. J.; Tobiesen, H. N.; Iversen, M. V.; Jorgensen, K. A. J. Am. Chem. Soc. 2018, 140, 12687.  doi: 10.1021/jacs.8b07394

    3. [3]

      Rezayee, N. M.; Lauridsen, V. H.; Naesborg, L.; Nguyen, T. V. Q.; Tobiesen, H. N.; Jorgensen, K. A. Chem. Sci. 2019, 10, 3586.  doi: 10.1039/C9SC00196D

    4. [4]

      Liu, Y.; Yue, X.; Luo, C.; Zhang, L.; Lei, M. Energy Environ. Mater. 2019, 2, 292.  doi: 10.1002/eem2.12050

    5. [5]

      Stana, A.; Enache, A.; Vodnar, D. C.; Nastasa, C.; Benedec, D.; Ionut, I.; Login, C.; Marc, G.; Oniga, O.; Tiperciuc, B. Molecules 2016, 21, 1595.  doi: 10.3390/molecules21111595

    6. [6]

      Hong, M.; Min, J.; Wang, S. Chin. J. Org. Chem. 2018, 38, 1907(in Chinese).
       

    7. [7]

      Li, Y.; Jia, F.; Ma, L.; Li, Z. Acta Chim. Sinica 2015, 73, 1311(in Chinese).  doi: 10.3969/j.issn.0253-2409.2015.11.005
       

    8. [8]

      Hu, S.-B.; Chen, M.-W.; Zhai, X.-Y.; Zhou, Y.-G. Acta Chim. Sinica 2018, 76, 103(in Chinese).
       

    9. [9]

      Wang, H.; Huang, L. Chin. J. Org. Chem. 2019, 39, 883(in Chinese).
       

    10. [10]

      Xiao, M.; Yue, X.; Xu, R.; Tang, W.; Xue, D.; Li, C.; Lei, M.; Xiao, J.; Wang, C. Angew. Chem., Int. Ed. 2019, 58, 10528.  doi: 10.1002/anie.201905870

    11. [11]

      Santerre, G. M.; Hansrote, C. J.; Crowell, T. I. J. Am. Chem. Soc. 1958, 80, 1254.  doi: 10.1021/ja01538a056

    12. [12]

      Martin, R. B. J. Phys. Chem. 1964, 68, 1369.  doi: 10.1021/j100788a017

    13. [13]

      Makela, M. J.; Korpela, T. K. Chem. Soc. Rev. 1983, 12, 309.  doi: 10.1039/CS9831200309

    14. [14]

      Jencks, W. P. Prog. Phys. Org. Chem. 1964, 2, 63.

    15. [15]

      Hine, J.; Via, F. A.; Gotkis, J. K.; Craig, J. C. J. Am. Chem. Soc. 1970, 92, 5186.  doi: 10.1021/ja00720a031

    16. [16]

      Sayer, J. M.; Pinsky, B.; Schonbrunn, A.; Washtien, W. J. Am. Chem. Soc. 1974, 96, 7998.  doi: 10.1021/ja00833a027

    17. [17]

      Rosenberg, S.; Silver, S. M.; Sayer, J. M.; Jencks, W. P. J. Am. Chem. Soc. 1974, 96, 7986.  doi: 10.1021/ja00833a026

    18. [18]

      Williams, I. H. J. Am. Chem. Soc. 1987, 109, 6299.  doi: 10.1021/ja00255a012

    19. [19]

      Hall, N. E.; Smith, B. J. J. Phys. Chem. A 1998, 102, 4930.  doi: 10.1021/jp9810825

    20. [20]

      Jencks, W. P. J. Am. Chem. Soc. 1959, 81, 475.  doi: 10.1021/ja01511a053

    21. [21]

      Jencks, W. P. Acc. Chem. Res. 1976, 9, 425.  doi: 10.1021/ar50108a001

    22. [22]

      Sayer, J. M.; Jencks, W. P. J. Am. Chem. Soc. 1973, 95, 5637.  doi: 10.1021/ja00798a031

    23. [23]

      Ding, Y. Q.; Cui, Y. Z.; Li, T. D. J. Phys. Chem. A 2015, 119, 4252.  doi: 10.1021/acs.jpca.5b02186

    24. [24]

      Salva, A.; Donoso, J.; Frau, J.; Muñoz, F. J. Phys. Chem. A 2003, 107, 9409.  doi: 10.1021/jp034769k

    25. [25]

      Ortega-Castro, J.; Adrover, M.; Frau, J.; Salva, A.; Donoso, J.; Muñoz, F. J. Phys. Chem. A 2010, 114, 4634.  doi: 10.1021/jp909156m

    26. [26]

      Casasnovas, R.; Salvà, A.; Frau, J.; Donoso, J.; Muñoz, F. Chem. Phys. 2009, 355, 149.  doi: 10.1016/j.chemphys.2008.12.006

    27. [27]

      Solis-Calero, C.; Ortega-Castro, J.; Muñoz, F. J. Phys. Chem. B 2010, 114, 15879.  doi: 10.1021/jp1088367

    28. [28]

      Kirmizialtin, S.; Yildiz, B. S.; Yildiz, I. J. Phys. Org. Chem. 2017, 30, 1.

    29. [29]

      Ciaccia, M.; Di Stefano, S. Org. Biomol. Chem. 2015, 13, 646.  doi: 10.1039/C4OB02110J

    30. [30]

      Hooley, R. J.; Iwasawa, T.; Rebek, J., Jr. J. Am. Chem. Soc. 2007, 129, 15330.  doi: 10.1021/ja0759343

    31. [31]

      Ciaccia, M.; Cacciapaglia, R.; Mencarelli, P.; Mandolini, L.; Di Stefano, S. Chem. Sci. 2013, 4, 2253.  doi: 10.1039/c3sc50277e

    32. [32]

      Chai, J.-D.; Head-Gordon, M. Phys. Chem. Chem. Phys. 2008, 10, 6615.  doi: 10.1039/b810189b

    33. [33]

      Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2009, 113, 6378.  doi: 10.1021/jp810292n

    34. [34]

      Hratchian, H. P.; Schlegel, H. B. J. Chem. Phys. 2004, 120, 9918.  doi: 10.1063/1.1724823

    35. [35]

      Mayer, I. Chem. Phys. Lett. 1983, 97, 270.  doi: 10.1016/0009-2614(83)80005-0

    36. [36]

      Wiberg, K. B. Tetrahedron 1968, 24, 1083.  doi: 10.1016/0040-4020(68)88057-3

    37. [37]

      Lu, T.; Chen, F. J. Comput. Chem. 2012, 33, 580.  doi: 10.1002/jcc.22885

    38. [38]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision B. 01. Gaussian, Inc., Wallingford, 2010.

    39. [39]

      Legault, C. Y. CYLview, 1.0b, Université de Sherbrooke, 2009, http://www.cylview.org.

  • 加载中
    1. [1]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    2. [2]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    3. [3]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    4. [4]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    5. [5]

      Fei Liu Dong-Yang Zhao Kai Sun Ting-Ting Yu Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047

    6. [6]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    7. [7]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    8. [8]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    9. [9]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    10. [10]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    11. [11]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    12. [12]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    13. [13]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    14. [14]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    15. [15]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    16. [16]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    17. [17]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    18. [18]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    19. [19]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    20. [20]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

Metrics
  • PDF Downloads(70)
  • Abstract views(4965)
  • HTML views(1689)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return