Citation: Li Zhewei, Wang Qianyue, Pu Min, Yang Zuoyin, Lei Ming. Theoretical Study on Nitrogenous Heterocyclic Assisted Aldimine Condensation[J]. Acta Chimica Sinica, ;2020, 78(5): 437-443. doi: 10.6023/A19110413 shu

Theoretical Study on Nitrogenous Heterocyclic Assisted Aldimine Condensation

  • Corresponding author: Pu Min, pumin@mail.buct.edu.cn Lei Ming, leim@mail.buct.edu.cn
  • Received Date: 26 November 2019
    Available Online: 8 April 2020

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21672018), the State Key Laboratory of Physical Chemistry of Solid Surfaces (Xiamen University) (No. 201811) and the Fundamental Research Funds for the Central Universities (No. XK1802-6)the State Key Laboratory of Physical Chemistry of Solid Surfaces (Xiamen University) 201811the National Natural Science Foundation of China 21672018the Fundamental Research Funds for the Central Universities XK1802-6

Figures(7)

  • Imines and the intermediate methylamine by the aldimine condensation of primary amines with aldehydes have a potential application in the field of pharmacy, life science, catalysis, material science, etc. In this reaction, the hydrogen transfer in the dehydration step normally prefers the pathway via a water bridge in aqueous solution or a directly dehydration in organic solvent. It is a different mechanism for the aldimine condensation of amine owning neighbouring nitrogenous heterocycle. Herein we investigated the mechanism of aldimine condensation of primary amine containing nitrogenous heterocycle with aldehyde in dichloromethane under acidic conditions using density functional theory (DFT) at ωB97X-D/6-31++G(d, p) level, the calculated results show that compared with specific acid catalysis, the heterocyclic nitrogen with stronger basicity is easier to be protonated than the oxygen of carbonyl group. The whole reaction proceeds two hydrogen transfer steps via nitrogen bridge owning an energy span of 13.08 kcal/mol. The rate-determing step is the second hydrogen transfer step. In each step the heterocyclic nitrogen is a bridge to assist the hydrogen transfer, which could reduce the free energy barrier of the aldimine condensation. It is unfavorable for the reaction pathway via directly hydrogen transfer with a four-membered ring transition state owning a free energy barrier of 32.73 kcal/mol, and the reaction pathway via a water bridge is not located. Meanwhile, the energy barriers increased for systems in which the N atom in heterocycle of primary amine is replaced by P/As atoms. The rate-determining step changes from the second hydrogen transfer step for N system to the first hydrogen transfer step for As system. The position effect of adjacent nitrogen atom is also investigated. The γ position owns the highest reactivity of the aldimine condensation, which implies that the ring strain plays an important role in the aldimine condensation of primary amine containing nitrogenous heterocycle with aldehyde. This theoretical study may provide insights to unveil the nature of aldimine condensation of aldehyde and primary amine owning nitrogeneous heterocycle.
  • 加载中
    1. [1]

      Schiff, H. Justus Liebigs Ann. Chem. 1864, 131, 118.  doi: 10.1002/jlac.18641310113

    2. [2]

      Leth, L. A.; Naesborg, L.; Reyes-Rodriguez, G. J.; Tobiesen, H. N.; Iversen, M. V.; Jorgensen, K. A. J. Am. Chem. Soc. 2018, 140, 12687.  doi: 10.1021/jacs.8b07394

    3. [3]

      Rezayee, N. M.; Lauridsen, V. H.; Naesborg, L.; Nguyen, T. V. Q.; Tobiesen, H. N.; Jorgensen, K. A. Chem. Sci. 2019, 10, 3586.  doi: 10.1039/C9SC00196D

    4. [4]

      Liu, Y.; Yue, X.; Luo, C.; Zhang, L.; Lei, M. Energy Environ. Mater. 2019, 2, 292.  doi: 10.1002/eem2.12050

    5. [5]

      Stana, A.; Enache, A.; Vodnar, D. C.; Nastasa, C.; Benedec, D.; Ionut, I.; Login, C.; Marc, G.; Oniga, O.; Tiperciuc, B. Molecules 2016, 21, 1595.  doi: 10.3390/molecules21111595

    6. [6]

      Hong, M.; Min, J.; Wang, S. Chin. J. Org. Chem. 2018, 38, 1907(in Chinese).
       

    7. [7]

      Li, Y.; Jia, F.; Ma, L.; Li, Z. Acta Chim. Sinica 2015, 73, 1311(in Chinese).  doi: 10.3969/j.issn.0253-2409.2015.11.005
       

    8. [8]

      Hu, S.-B.; Chen, M.-W.; Zhai, X.-Y.; Zhou, Y.-G. Acta Chim. Sinica 2018, 76, 103(in Chinese).
       

    9. [9]

      Wang, H.; Huang, L. Chin. J. Org. Chem. 2019, 39, 883(in Chinese).
       

    10. [10]

      Xiao, M.; Yue, X.; Xu, R.; Tang, W.; Xue, D.; Li, C.; Lei, M.; Xiao, J.; Wang, C. Angew. Chem., Int. Ed. 2019, 58, 10528.  doi: 10.1002/anie.201905870

    11. [11]

      Santerre, G. M.; Hansrote, C. J.; Crowell, T. I. J. Am. Chem. Soc. 1958, 80, 1254.  doi: 10.1021/ja01538a056

    12. [12]

      Martin, R. B. J. Phys. Chem. 1964, 68, 1369.  doi: 10.1021/j100788a017

    13. [13]

      Makela, M. J.; Korpela, T. K. Chem. Soc. Rev. 1983, 12, 309.  doi: 10.1039/CS9831200309

    14. [14]

      Jencks, W. P. Prog. Phys. Org. Chem. 1964, 2, 63.

    15. [15]

      Hine, J.; Via, F. A.; Gotkis, J. K.; Craig, J. C. J. Am. Chem. Soc. 1970, 92, 5186.  doi: 10.1021/ja00720a031

    16. [16]

      Sayer, J. M.; Pinsky, B.; Schonbrunn, A.; Washtien, W. J. Am. Chem. Soc. 1974, 96, 7998.  doi: 10.1021/ja00833a027

    17. [17]

      Rosenberg, S.; Silver, S. M.; Sayer, J. M.; Jencks, W. P. J. Am. Chem. Soc. 1974, 96, 7986.  doi: 10.1021/ja00833a026

    18. [18]

      Williams, I. H. J. Am. Chem. Soc. 1987, 109, 6299.  doi: 10.1021/ja00255a012

    19. [19]

      Hall, N. E.; Smith, B. J. J. Phys. Chem. A 1998, 102, 4930.  doi: 10.1021/jp9810825

    20. [20]

      Jencks, W. P. J. Am. Chem. Soc. 1959, 81, 475.  doi: 10.1021/ja01511a053

    21. [21]

      Jencks, W. P. Acc. Chem. Res. 1976, 9, 425.  doi: 10.1021/ar50108a001

    22. [22]

      Sayer, J. M.; Jencks, W. P. J. Am. Chem. Soc. 1973, 95, 5637.  doi: 10.1021/ja00798a031

    23. [23]

      Ding, Y. Q.; Cui, Y. Z.; Li, T. D. J. Phys. Chem. A 2015, 119, 4252.  doi: 10.1021/acs.jpca.5b02186

    24. [24]

      Salva, A.; Donoso, J.; Frau, J.; Muñoz, F. J. Phys. Chem. A 2003, 107, 9409.  doi: 10.1021/jp034769k

    25. [25]

      Ortega-Castro, J.; Adrover, M.; Frau, J.; Salva, A.; Donoso, J.; Muñoz, F. J. Phys. Chem. A 2010, 114, 4634.  doi: 10.1021/jp909156m

    26. [26]

      Casasnovas, R.; Salvà, A.; Frau, J.; Donoso, J.; Muñoz, F. Chem. Phys. 2009, 355, 149.  doi: 10.1016/j.chemphys.2008.12.006

    27. [27]

      Solis-Calero, C.; Ortega-Castro, J.; Muñoz, F. J. Phys. Chem. B 2010, 114, 15879.  doi: 10.1021/jp1088367

    28. [28]

      Kirmizialtin, S.; Yildiz, B. S.; Yildiz, I. J. Phys. Org. Chem. 2017, 30, 1.

    29. [29]

      Ciaccia, M.; Di Stefano, S. Org. Biomol. Chem. 2015, 13, 646.  doi: 10.1039/C4OB02110J

    30. [30]

      Hooley, R. J.; Iwasawa, T.; Rebek, J., Jr. J. Am. Chem. Soc. 2007, 129, 15330.  doi: 10.1021/ja0759343

    31. [31]

      Ciaccia, M.; Cacciapaglia, R.; Mencarelli, P.; Mandolini, L.; Di Stefano, S. Chem. Sci. 2013, 4, 2253.  doi: 10.1039/c3sc50277e

    32. [32]

      Chai, J.-D.; Head-Gordon, M. Phys. Chem. Chem. Phys. 2008, 10, 6615.  doi: 10.1039/b810189b

    33. [33]

      Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2009, 113, 6378.  doi: 10.1021/jp810292n

    34. [34]

      Hratchian, H. P.; Schlegel, H. B. J. Chem. Phys. 2004, 120, 9918.  doi: 10.1063/1.1724823

    35. [35]

      Mayer, I. Chem. Phys. Lett. 1983, 97, 270.  doi: 10.1016/0009-2614(83)80005-0

    36. [36]

      Wiberg, K. B. Tetrahedron 1968, 24, 1083.  doi: 10.1016/0040-4020(68)88057-3

    37. [37]

      Lu, T.; Chen, F. J. Comput. Chem. 2012, 33, 580.  doi: 10.1002/jcc.22885

    38. [38]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision B. 01. Gaussian, Inc., Wallingford, 2010.

    39. [39]

      Legault, C. Y. CYLview, 1.0b, Université de Sherbrooke, 2009, http://www.cylview.org.

  • 加载中
    1. [1]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    2. [2]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    3. [3]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    4. [4]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    5. [5]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    6. [6]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    7. [7]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    8. [8]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    9. [9]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    10. [10]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    11. [11]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    12. [12]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    13. [13]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    14. [14]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    15. [15]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    16. [16]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    17. [17]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    18. [18]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

Metrics
  • PDF Downloads(66)
  • Abstract views(4618)
  • HTML views(1608)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return