Citation: Dong Kui, Liu Qiang, Wu Li-Zhu. Cross-Coupling Hydrogen Evolution Reactions[J]. Acta Chimica Sinica, ;2020, 78(4): 299-310. doi: 10.6023/A19110412 shu

Cross-Coupling Hydrogen Evolution Reactions

  • Corresponding author: Liu Qiang, liuqiang@lzu.edu.cn Wu Li-Zhu, lzwu@mail.ipc.ac.cn
  • Received Date: 23 November 2019
    Available Online: 11 March 2020

    Fund Project: the Strategic Priority Research Program of the Chinese Academy of Sciences XDB17030200the National Natural Science Foundation of China 21390404Project supported by the National Natural Science Foundation of China (Nos. 21572090, 91427303, 21402217, 21390404), the Ministry of Science and Technology of China (Nos. 2013CB834804, 2013CB834505, 2014CB239402) and the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB17030200)the National Natural Science Foundation of China 21572090the Ministry of Science and Technology of China 2013CB834505the National Natural Science Foundation of China 21402217the Ministry of Science and Technology of China 2014CB239402the National Natural Science Foundation of China 91427303the Ministry of Science and Technology of China 2013CB834804

Figures(23)

  • During the past decade, transition metal-catalyzed dehydrogenative cross-couplings have emerged as an attractive strategy in synthetic chemistry due to its high step- and atom-economy as well as the less functionalized coupling partners. However, such reactions have to always use stoichiometric amount of sacrificial oxidants such as peroxides, high-valent metals (Cu salts, Ag salts, etc.), or iodine(Ⅲ) oxidants, thereby leading to possible generation of toxic wastes and making the process less desirable from a green chemistry perspective. The recently developed photocatalytic CCHE (cross-coupling hydrogen-evolution) reactions are a conceptually new type of reactions enabled by combination of photo-redox catalysis and proton reduction catalysis, wherein the photocatalyst uses light energy as the driving force for the cross-coupling and the hydrogen evolution catalyst may capture electrons and protons from the substrates or reaction intermediates to produce molecular hydrogen (H2). Thus, without use of any sacrificial oxidant and under mild conditions, the dual catalyst system may afford cross-coupling products with excellent yields and an equivalent amount of H2 as the sole byproduct. This kind of cross-coupling delivers a greener synthetic strategy and is particularly useful for reactions that involve species sensitive to traditional oxidants. In CCHE reactions, the raw materials are directly converted into products and hydrogen, the reactions are highly atom economy, environmentally friendly, and have attractive potential industrial application prospects. In this review, recent dramatic developments of photocatalytic and electrochemical CCHE reactions are discussed via the most prominent mechanistic pathways, the types of C-C bond, C-X (heteroatom) bond, or X-X bond formations and specific reaction classes.
  • 加载中
    1. [1]

      Zhong, J.-J.; Meng, Q.-Y.; Chen, B.; Tung, C.-H.; Wu, L.-Z. Acta Chim. Sinica 2017, 75, 34(in Chinese).  doi: 10.3969/j.issn.0253-2409.2017.01.006
       

    2. [2]

      Liu, Q.; Wu, L.-Z. Natl. Sci. Rev. 2017, 4, 359.  doi: 10.1093/nsr/nwx039

    3. [3]

      Chen, B.; Wu, L.-Z.; Tung, C.-H. Acc. Chem. Res. 2018, 51, 2512.  doi: 10.1021/acs.accounts.8b00267

    4. [4]

      Meng, Q.-Y.; Zhong, J.-J.; Liu, Q.; Gao, X.-W.; Zhang, H.-H.; Lei, T.; Li, Z.-J.; Feng, K.; Chen, B.; Tung, C.-H.; Wu, L.-Z. J. Am. Chem. Soc. 2013, 135, 19052.  doi: 10.1021/ja408486v

    5. [5]

      Zhong, J.-J.; Meng, Q.-Y.; Liu, B.; Li, X.-B.; Gao, X.-W.; Lei, T.; Wu, C.-J.; Li, Z.-J.; Tung, C.-H.; Wu, L.-Z. Org. Lett. 2014, 16, 1988.  doi: 10.1021/ol500534w

    6. [6]

      Gao, X.-W.; Meng, Q.-Y.; Li, J.-X.; Zhong, J.-J.; Lei, T.; Li, X.-B.; Tung, C.-H.; Wu, L.-Z. ACS Catal. 2015, 5, 2391.  doi: 10.1021/acscatal.5b00093

    7. [7]

      Xiang, M.; Meng, Q.-Y.; Li, J.-X.; Zheng, Y.-W.; Ye, C.; Li, Z.-J.; Chen, B.; Tung, C.-H.; Wu, L.-Z. Chem. Eur. J. 2015, 21, 18080.  doi: 10.1002/chem.201503361

    8. [8]

      Cao, W. X.; Wu, C. J.; Lei, T.; Yang, X. L.; Chen, B.; Tung, C. H.; Wu, L. Z. Chin. J. Catal. 2018, 39, 1194.  doi: 10.1016/S1872-2067(18)63095-5

    9. [9]

      Tang, S.; Zeng, L.; Lei, A. W. J. Am. Chem. Soc. 2018, 140, 13128.  doi: 10.1021/jacs.8b07327

    10. [10]

      Wang, H. M.; Gao, X. L.; Lv, Z. C.; Abdelilah, T.; Lei, A. W. Chem. Rev. 2019, 119, 6769.  doi: 10.1021/acs.chemrev.9b00045

    11. [11]

      Twilton, J.; Le, C.; Zhang, P.; Shaw, M. H.; Evans, R. W.; MacMillan, D. W. C. Nat. Rev. Chem. 2017, 1, 0052.  doi: 10.1038/s41570-017-0052

    12. [12]

      Tyagi, A.; Yamamoto, A.; Yamamoto, M.; Yoshidad, T.; Yoshida, H. Catal. Sci. Technol. 2018, 8, 2546.  doi: 10.1039/C8CY00129D

    13. [13]

      Girish, Y. R.; Jaiswal, K.; Prakash, P.; De, M. Catal. Sci. Technol. 2019, 9, 1201.  doi: 10.1039/C8CY02532K

    14. [14]

      Wu, C. J.; Meng, Q. Y.; Lei, T.; Zhong, J. J.; Liu, W. Q.; Zhao, L. M.; Li, Z. J.; Chen, B.; Tung, C. H.; Wu, L. Z. ACS Catal. 2016, 6, 4635.  doi: 10.1021/acscatal.6b00917

    15. [15]

      Hu, X.; Zhang, G. T; Bu, F. X.; Luo, X.; Yi, K. B.; Zhang, H.; Lei, A. W. Chem. Sci. 2018, 9, 1521.  doi: 10.1039/C7SC04634K

    16. [16]

      Zhang, G. T.; Lin, Y. L.; Luo, X.; Hu, X.; Chen, C.; Lei, A. W. Nat. Commun. 2018, 9, 1225.  doi: 10.1038/s41467-018-03534-z

    17. [17]

      Lin, J.; Li, Z.; Kan, J.; Huang, S. J.; Su, W. P.; Li, Y. D. Nat. Commun. 2017, 8, 14353.  doi: 10.1038/ncomms14353

    18. [18]

      Cao, H.; Jiang, H. M.; Feng, H. Y.; Kwan, J. M. C.; Liu, X. G.; Wu, J. J. Am. Chem. Soc. 2018, 140, 16360.  doi: 10.1021/jacs.8b11218

    19. [19]

      Sun, X.; Chen, J.; Ritter, T. Nature Chem. 2018, 10, 1229.  doi: 10.1038/s41557-018-0142-4

    20. [20]

      Nguyen, V. T.; Nguyen, V. D.; Haug, G. C.; Dang, H. T.; Jin, S.; Li, Z.; Flores-Hansen, C.; Benavides, B. S.; Arman, H. D.; Larionov, O. V. ACS Catal. 2019, 9, 9485.  doi: 10.1021/acscatal.9b02951

    21. [21]

      Kirste, A.; Elsler, B.; Schnakenburg, G.; Waldvogel, S. R. J. Am. Chem. Soc. 2012, 134, 3571.  doi: 10.1021/ja211005g

    22. [22]

      Elsler, B.; Schollmeyer, D.; Dyballa, K. M.; Franke, R.; Waldvogel, S. R. Angew. Chem., Int. Ed. 2014, 53, 5210.

    23. [23]

      Wiebe, A.; Lips, S.; Schollmeyer, D.; Franke, R.; Waldvogel, S. R. Angew. Chem., Int. Ed. 2017, 56, 14727.  doi: 10.1002/anie.201708946

    24. [24]

      Lips, S.; Schollmeyer, D.; Franke, R.; Waldvogel, S. R. Angew. Chem., Int. Ed. 2018, 57, 13325.  doi: 10.1002/anie.201808555

    25. [25]

      Schulz, L.; Enders, M.; Elsler, B.; Schollmeyer, D.; Dyballa, K. M.; Franke, R.; Waldvogel, S. R. Angew. Chem., Int. Ed. 2017, 56, 4877.  doi: 10.1002/anie.201612613

    26. [26]

      Wu, Z. J.; Xu, H. C. Angew. Chem., Int. Ed. 2017, 56, 4734.  doi: 10.1002/anie.201701329

    27. [27]

      Zhang, G. T.; Hu, X.; Chiang, C. W.; Yi, H.; Pei, P. K.; Singh, A. K.; Lei, A. W. J. Am. Chem. Soc. 2016, 138, 12037.  doi: 10.1021/jacs.6b07411

    28. [28]

      Yi, H.; Niu, L.; Song, C.; Li, Y.; Dou, B.; Singh, A. K.; Lei, A. W. Angew. Chem., Int. Ed. 2017, 56, 1120.  doi: 10.1002/anie.201609274

    29. [29]

      Zhang, M.; Ruzi, R.; Li, N.; Xie, J.; Zhu, C. J. Org. Chem. Front. 2018, 5, 749.  doi: 10.1039/C7QO00795G

    30. [30]

      Shao, A.; Li, N.; Gao, Y.; Zhan, J.; Chiang, C.-W.; Lei, A. W. Chin. J. Chem. 2018, 36, 619.  doi: 10.1002/cjoc.201800031

    31. [31]

      Shao, A.; Zhan, J.; Li, N.; Chiang, C.-W.; Lei, A. W. J. Org. Chem. 2018, 83, 3582.  doi: 10.1021/acs.joc.7b03195

    32. [32]

      Yang, Q.; Jia, Z. B.; Li, L. J.; Zhang, L.; Luo, S. Z. Org. Chem. Front. 2018, 5, 237.  doi: 10.1039/C7QO00826K

    33. [33]

      Hu, X.; Zhang, G.; Bu, F.; Lei, A. W. Angew. Chem., Int. Ed. 2018, 57, 1286.  doi: 10.1002/anie.201711359

    34. [34]

      Tian, W.-F.; Wang, D.-P.; Wang, S.-F.; He, K.-H.; Cao, X.-P.; Li, Y. Org. Lett. 2018, 20, 1421.  doi: 10.1021/acs.orglett.8b00193

    35. [35]

      Niu, L.; Yi, H.; Wang, S.; Liu, T.; Liu, J.; Lei, A. W. Nat. Commun. 2017, 8, 14226.  doi: 10.1038/ncomms14226

    36. [36]

      Chen, H.; Yi, H.; Tang, Z. L.; Bian, C. L.; Zhang, H.; Lei, A. W. Adv. Synth. Catal. 2018, 360, 3220.  doi: 10.1002/adsc.201800531

    37. [37]

      Zhao, F. Q.; Yang, Q.; Zhang, J. J.; Shi, W. M.; Hu, H. H.; Liang, F.; Wei, W.; Zhou, S. L. Org. Lett. 2018, 20, 7753.  doi: 10.1021/acs.orglett.8b03089

    38. [38]

      Zhao, Q.-Q.; Hu, X.-Q.; Yang, M.-N.; Chen, J.-R.; Xiao, W.-J. Chem. Commun. 2016, 52, 12749.  doi: 10.1039/C6CC05897C

    39. [39]

      Zhong, J.-J.; To, W.-P.; Liu, Y.; Lu, W.; Che, C.-M. Chem. Sci. 2019, 10, 4883.  doi: 10.1039/C8SC05600E

    40. [40]

      Tang, S.; Wang, S. Y.; Liu, Y. C.; Cong, H. J.; Lei, A. W. Angew. Chem., Int. Ed. 2018, 57, 4737.  doi: 10.1002/anie.201800240

    41. [41]

      Wang, J. H.; Lei, T.; Nan, X. L.; Wu, H. L.; Li, X. B.; Chen, B.; Tung, C. H.; Wu, L. Z. Org. Lett. 2019, 21, 5581.  doi: 10.1021/acs.orglett.9b01910

    42. [42]

      Sauermann, N.; Mei, R.; Ackermann, L. Angew. Chem., Int. Ed. 2018, 57, 5090.  doi: 10.1002/anie.201802206

    43. [43]

      Gao, X. L.; Wang, P.; Zeng, L.; Tang, S.; Lei, A. W. J. Am. Chem. Soc. 2018, 140, 4195.  doi: 10.1021/jacs.7b13049

    44. [44]

      Yang, Q. L.; Wang, X. Y.; Lu, J. Y.; Zhang, L. P.; Fang, P.; Mei, T. S. J. Am. Chem. Soc. 2018, 140, 11487.  doi: 10.1021/jacs.8b07380

    45. [45]

      Zhao, H.-B.; Hou, Z.-W.; Liu, Z.-J.; Zhou, Z.-F.; Song, J.-S.; Xu, H.-C. Angew. Chem., Int. Ed. 2017, 56, 587.  doi: 10.1002/anie.201610715

    46. [46]

      Niu, L. B.; Wang, S. C.; Liu, J. M.; Yi, H.; Liang, X. A.; Liu, T. Y.; Lei, A. W. Chem. Commun. 2018, 54, 1659.  doi: 10.1039/C7CC09624K

    47. [47]

      Luo, K.; Chen, Y.-Z.; Yang, W.-C.; Zhu, J.; Wu, L. Org. Lett. 2016, 18, 452.  doi: 10.1021/acs.orglett.5b03497

    48. [48]

      Liu, W. Q.; Lei, T.; Zhou, S.; Yang, X. L.; Li, J.; Chen, B.; Sivaguru, J.; Tung, C. H.; Wu, L. Z. J. Am. Chem. Soc. 2019, 141, 13941.  doi: 10.1021/jacs.9b06920

    49. [49]

      Wang, J. H.; Li, X. B.; Li, J.; Lei, T.; Wu, H. L.; Nan, X. L.; Tung, C. H.; Wu, L. Z. Chem. Commun. 2019, 55, 10376.  doi: 10.1039/C9CC05375A

    50. [50]

      Zhang, G.; Liu, C.; Yi, H.; Meng, Q.; Bian, C.; Chen, H.; Jian, J.-X.; Wu, L.-Z.; Lei, A. W. J. Am. Chem. Soc. 2015, 137, 9273.  doi: 10.1021/jacs.5b05665

    51. [51]

      Zhang, G.; Zhang, L.; Yi, H.; Luo, Y.; Qi, X.; Tung, C.-H.; Wu, L.-Z.; Lei, A. W. Chem. Commun. 2016, 52, 10407.  doi: 10.1039/C6CC04109D

    52. [52]

      Wang, P.; Tang, S.; Huang, P. F.; Lei, A. W. Angew. Chem., Int. Ed. 2017, 56, 3009.  doi: 10.1002/anie.201700012

    53. [53]

      Yuan, Y.; Cao, Y.; Qiao, J.; Lin, Y.; Jiang, X.; Weng, Y.; Tang, S.; Lei, A. W. Chin. J. Chem. 2019, 37, 49.  doi: 10.1002/cjoc.201800405

    54. [54]

      Liu, W.-Q.; Yang, X.-L.; Tung, C.-H.; Wu, L.-Z. Acta Chim. Sinica 2019, 77, 861(in Chinese).
       

    55. [55]

      Lu, F.-L.; Yang, Z.-Z.; Wang, T.; Wang, T.-H.; Zhang, Y.-Y.; Yuan, Y.; Lei, A.-W. Chin. J. Chem. 2019, 37, 547.

    56. [56]

      Yu, W. L.; Luo, Y. C.; Yan, L.; Liu, D.; Wang, Z. Y.; Xu, P. F. Angew. Chem., Int. Ed. 2019, 58, 10941.  doi: 10.1002/anie.201904707

    57. [57]

      Li, X.-B.; Li, Z.-J.; Gao, Y.-J.; Meng, Q.-Y.; Yu, S.; Weiss, R. G.; Tung, C.-H.; Wu, L.-Z. Angew. Chem., Int. Ed. 2014, 53, 2085.  doi: 10.1002/anie.201310249

    58. [58]

      He, K.-H.; Tan, F.-F.; Zhou, C.-Z.; Zhou, G.-J.; Yang, X.-L.; Li, Y. Angew. Chem., Int. Ed. 2017, 56, 3080.  doi: 10.1002/anie.201612486

    59. [59]

      Kato, S.; Saga, Y.; Kojima, M.; Fuse, H.; Matsunaga, S.; Fukatsu, A.; Kondo, M.; Masaoka, S.; Kanai, M. J. Am. Chem. Soc. 2017, 139, 2204.  doi: 10.1021/jacs.7b00253

    60. [60]

      Yin, Q.; Oestreich, M. Angew. Chem., Int. Ed. 2017, 56, 7716.  doi: 10.1002/anie.201703536

    61. [61]

      Chai, Z. G.; Zeng, T. T.; Li, Q.; Lu, L. Q.; Xiao, W. J.; Xu, D. S. J. Am. Chem. Soc. 2016, 138, 10128.  doi: 10.1021/jacs.6b06860

    62. [62]

      Zhao, L.-M.; Meng, Q.-Y.; Fan, X.-B.; Ye, C.; Li, X.-B.; Chen, B.; Ramamurthy, V.; Tung, C.-H.; Wu, L.-Z. Angew. Chem., Int. Ed. 2017, 56, 3020.  doi: 10.1002/anie.201700243

    63. [63]

      Huang, C.; Li, X.-B.; Tung, C.-H.; Wu, L.-Z. Chem. Eur. J. 2018, 24, 11530.  doi: 10.1002/chem.201800391

    64. [64]

      Yang, X.-J.; Zheng, Y.-W.; Zheng, L.-Q.; Wu, L.-Z.; Tung, C.-H.; Chen, B. Green Chem. 2019, 21, 1401.  doi: 10.1039/C8GC03828G

    65. [65]

      Sahoo, M. K.; Saravanakumar, K.; Jaiswal, G.; Balaraman, E. ACS Catal. 2018, 8, 7727.  doi: 10.1021/acscatal.8b01579

    66. [66]

      West, J. G.; Huang, D.; Sorensen, E. J. Nat. Commun. 2015, 6, 10093.  doi: 10.1038/ncomms10093

    67. [67]

      Zhong, J.-J.; Wu, C.-J.; Meng, Q.-Y.; Gao, X.-W.; Lei, T.; Tung, C.-H.; Wu, L.-Z. Adv. Synth. Catal. 2014, 356, 2846.  doi: 10.1002/adsc.201400588

    68. [68]

      Yang, X. L.; Guo, J. D.; Lei, T.; Chen, B.; Tung, C. H.; Wu, L. Z. Org. Lett. 2018, 20, 2916.  doi: 10.1021/acs.orglett.8b00977

    69. [69]

      Yang, Q.; Zhang, L.; Ye, C.; Luo, S. Z.; Wu, L.-Z.; Tung, C.-H. Angew. Chem., Int. Ed. 2017, 56, 3694.  doi: 10.1002/anie.201700572

    70. [70]

      Zheng, Y.-W.; Chen, B.; Ye, P.; Feng, K.; Wang, W.; Meng, Q.-Y.; Wu, L.-Z.; Tung, C.-H. J. Am. Chem. Soc. 2016, 138, 10080.  doi: 10.1021/jacs.6b05498

    71. [71]

      Zheng, Y.-W.; Ye, P.; Chen, B.; Meng, Q.-Y.; Feng, K.; Wang, W.; Wu, L.-Z.; Tung, C.-H. Org. Lett. 2017, 19, 2206.  doi: 10.1021/acs.orglett.7b00463

    72. [72]

      Su, X. J. Am. Chem. Soc. 2013, 135, 19047.  doi: 10.1021/ja4125912

    73. [73]

      Su, X. J. Am. Chem. Soc. 2016, 138, 11409.  doi: 10.1021/jacs.6b09146

    74. [74]

      Ravelli, D.; Fagnoni, M.; Albini, A. Chem. Soc. Rev. 2013, 42, 97.  doi: 10.1039/C2CS35250H

    75. [75]

      Yi, H.; Niu, L. B.; Song, C. L.; Li, Y. Y.; Dou, B. W.; Singh, A. K.; Lei, A. W. Angew. Chem. 2017, 129, 1140.  doi: 10.1002/ange.201609274

    76. [76]

      Tang, S.; Gao, X. L.; Lei, A. W. Chem. Commun. 2017, 53, 3354.  doi: 10.1039/C7CC00410A

    77. [77]

      He, K.-H.; Li, Y. ChemSusChem 2014, 7, 2788.  doi: 10.1002/cssc.201402606

    78. [78]

      Li, W.-H.; Wu, L.; Li, S.-S.; Liu, C.-F.; Zhang, G.-T.; Dong, L. Chem. Eur. J. 2016, 22, 17926.  doi: 10.1002/chem.201603887

    79. [79]

      Chen, C.; Chen, X.; Zhao, H.; Jiang, H.; Zhang, M. Org. Lett. 2017, 19, 3390.  doi: 10.1021/acs.orglett.7b01349

    80. [80]

      Ren, L.-J.; Ran, M.-G.; He, J.-X.; Qian, Y.; Yao, Q.-L. Chin. J. Org. Chem. 2019, 39, 1583(in Chinese).

  • 加载中
    1. [1]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    2. [2]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    3. [3]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    4. [4]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    5. [5]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    6. [6]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    7. [7]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    8. [8]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    9. [9]

      Jihua Deng Xinshi Wu Dichang Zhong . Exploration of Green Teaching and Ideological and Political Education in Chemical Experiment of “Preparation of Ammonium Ferrous Sulfate”. University Chemistry, 2024, 39(10): 325-329. doi: 10.12461/PKU.DXHX202405046

    10. [10]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    11. [11]

      Zhilian Liu Wengui Wang Hongxiao Yang Yu Cui Shoufeng Wang . Ideological and Political Education Design for the Synthesis of Irinotecan Drug Intermediate 7-Ethyl Camptothecin. University Chemistry, 2024, 39(2): 89-93. doi: 10.3866/PKU.DXHX202306012

    12. [12]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    13. [13]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    14. [14]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    15. [15]

      Yunchao Li Shanying Chen Ke Qi Kangning Huo Shuxin Li Jingyi Li Ying Wei Louzhen Fan . A New Colloid Electrophoresis Experiment Incorporating Characteristics of Inquiry Learning and Ideological and Political Education. University Chemistry, 2024, 39(2): 47-51. doi: 10.3866/PKU.DXHX202308063

    16. [16]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    17. [17]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    18. [18]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    19. [19]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    20. [20]

      Yiming Lu Xiang Xie Xiaoqing Qiu Yang Liu Xinyuan Cheng . The New Year’s Eve of the Aviation Brake Material Family. University Chemistry, 2024, 39(9): 203-207. doi: 10.12461/PKU.DXHX202403061

Metrics
  • PDF Downloads(37)
  • Abstract views(1921)
  • HTML views(410)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return