Citation: Dong Kui, Liu Qiang, Wu Li-Zhu. Cross-Coupling Hydrogen Evolution Reactions[J]. Acta Chimica Sinica, ;2020, 78(4): 299-310. doi: 10.6023/A19110412 shu

Cross-Coupling Hydrogen Evolution Reactions

  • Corresponding author: Liu Qiang, liuqiang@lzu.edu.cn Wu Li-Zhu, lzwu@mail.ipc.ac.cn
  • Received Date: 23 November 2019
    Available Online: 11 March 2020

    Fund Project: the Strategic Priority Research Program of the Chinese Academy of Sciences XDB17030200the National Natural Science Foundation of China 21390404Project supported by the National Natural Science Foundation of China (Nos. 21572090, 91427303, 21402217, 21390404), the Ministry of Science and Technology of China (Nos. 2013CB834804, 2013CB834505, 2014CB239402) and the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB17030200)the National Natural Science Foundation of China 21572090the Ministry of Science and Technology of China 2013CB834505the National Natural Science Foundation of China 21402217the Ministry of Science and Technology of China 2014CB239402the National Natural Science Foundation of China 91427303the Ministry of Science and Technology of China 2013CB834804

Figures(23)

  • During the past decade, transition metal-catalyzed dehydrogenative cross-couplings have emerged as an attractive strategy in synthetic chemistry due to its high step- and atom-economy as well as the less functionalized coupling partners. However, such reactions have to always use stoichiometric amount of sacrificial oxidants such as peroxides, high-valent metals (Cu salts, Ag salts, etc.), or iodine(Ⅲ) oxidants, thereby leading to possible generation of toxic wastes and making the process less desirable from a green chemistry perspective. The recently developed photocatalytic CCHE (cross-coupling hydrogen-evolution) reactions are a conceptually new type of reactions enabled by combination of photo-redox catalysis and proton reduction catalysis, wherein the photocatalyst uses light energy as the driving force for the cross-coupling and the hydrogen evolution catalyst may capture electrons and protons from the substrates or reaction intermediates to produce molecular hydrogen (H2). Thus, without use of any sacrificial oxidant and under mild conditions, the dual catalyst system may afford cross-coupling products with excellent yields and an equivalent amount of H2 as the sole byproduct. This kind of cross-coupling delivers a greener synthetic strategy and is particularly useful for reactions that involve species sensitive to traditional oxidants. In CCHE reactions, the raw materials are directly converted into products and hydrogen, the reactions are highly atom economy, environmentally friendly, and have attractive potential industrial application prospects. In this review, recent dramatic developments of photocatalytic and electrochemical CCHE reactions are discussed via the most prominent mechanistic pathways, the types of C-C bond, C-X (heteroatom) bond, or X-X bond formations and specific reaction classes.
  • 加载中
    1. [1]

      Zhong, J.-J.; Meng, Q.-Y.; Chen, B.; Tung, C.-H.; Wu, L.-Z. Acta Chim. Sinica 2017, 75, 34(in Chinese).  doi: 10.3969/j.issn.0253-2409.2017.01.006
       

    2. [2]

      Liu, Q.; Wu, L.-Z. Natl. Sci. Rev. 2017, 4, 359.  doi: 10.1093/nsr/nwx039

    3. [3]

      Chen, B.; Wu, L.-Z.; Tung, C.-H. Acc. Chem. Res. 2018, 51, 2512.  doi: 10.1021/acs.accounts.8b00267

    4. [4]

      Meng, Q.-Y.; Zhong, J.-J.; Liu, Q.; Gao, X.-W.; Zhang, H.-H.; Lei, T.; Li, Z.-J.; Feng, K.; Chen, B.; Tung, C.-H.; Wu, L.-Z. J. Am. Chem. Soc. 2013, 135, 19052.  doi: 10.1021/ja408486v

    5. [5]

      Zhong, J.-J.; Meng, Q.-Y.; Liu, B.; Li, X.-B.; Gao, X.-W.; Lei, T.; Wu, C.-J.; Li, Z.-J.; Tung, C.-H.; Wu, L.-Z. Org. Lett. 2014, 16, 1988.  doi: 10.1021/ol500534w

    6. [6]

      Gao, X.-W.; Meng, Q.-Y.; Li, J.-X.; Zhong, J.-J.; Lei, T.; Li, X.-B.; Tung, C.-H.; Wu, L.-Z. ACS Catal. 2015, 5, 2391.  doi: 10.1021/acscatal.5b00093

    7. [7]

      Xiang, M.; Meng, Q.-Y.; Li, J.-X.; Zheng, Y.-W.; Ye, C.; Li, Z.-J.; Chen, B.; Tung, C.-H.; Wu, L.-Z. Chem. Eur. J. 2015, 21, 18080.  doi: 10.1002/chem.201503361

    8. [8]

      Cao, W. X.; Wu, C. J.; Lei, T.; Yang, X. L.; Chen, B.; Tung, C. H.; Wu, L. Z. Chin. J. Catal. 2018, 39, 1194.  doi: 10.1016/S1872-2067(18)63095-5

    9. [9]

      Tang, S.; Zeng, L.; Lei, A. W. J. Am. Chem. Soc. 2018, 140, 13128.  doi: 10.1021/jacs.8b07327

    10. [10]

      Wang, H. M.; Gao, X. L.; Lv, Z. C.; Abdelilah, T.; Lei, A. W. Chem. Rev. 2019, 119, 6769.  doi: 10.1021/acs.chemrev.9b00045

    11. [11]

      Twilton, J.; Le, C.; Zhang, P.; Shaw, M. H.; Evans, R. W.; MacMillan, D. W. C. Nat. Rev. Chem. 2017, 1, 0052.  doi: 10.1038/s41570-017-0052

    12. [12]

      Tyagi, A.; Yamamoto, A.; Yamamoto, M.; Yoshidad, T.; Yoshida, H. Catal. Sci. Technol. 2018, 8, 2546.  doi: 10.1039/C8CY00129D

    13. [13]

      Girish, Y. R.; Jaiswal, K.; Prakash, P.; De, M. Catal. Sci. Technol. 2019, 9, 1201.  doi: 10.1039/C8CY02532K

    14. [14]

      Wu, C. J.; Meng, Q. Y.; Lei, T.; Zhong, J. J.; Liu, W. Q.; Zhao, L. M.; Li, Z. J.; Chen, B.; Tung, C. H.; Wu, L. Z. ACS Catal. 2016, 6, 4635.  doi: 10.1021/acscatal.6b00917

    15. [15]

      Hu, X.; Zhang, G. T; Bu, F. X.; Luo, X.; Yi, K. B.; Zhang, H.; Lei, A. W. Chem. Sci. 2018, 9, 1521.  doi: 10.1039/C7SC04634K

    16. [16]

      Zhang, G. T.; Lin, Y. L.; Luo, X.; Hu, X.; Chen, C.; Lei, A. W. Nat. Commun. 2018, 9, 1225.  doi: 10.1038/s41467-018-03534-z

    17. [17]

      Lin, J.; Li, Z.; Kan, J.; Huang, S. J.; Su, W. P.; Li, Y. D. Nat. Commun. 2017, 8, 14353.  doi: 10.1038/ncomms14353

    18. [18]

      Cao, H.; Jiang, H. M.; Feng, H. Y.; Kwan, J. M. C.; Liu, X. G.; Wu, J. J. Am. Chem. Soc. 2018, 140, 16360.  doi: 10.1021/jacs.8b11218

    19. [19]

      Sun, X.; Chen, J.; Ritter, T. Nature Chem. 2018, 10, 1229.  doi: 10.1038/s41557-018-0142-4

    20. [20]

      Nguyen, V. T.; Nguyen, V. D.; Haug, G. C.; Dang, H. T.; Jin, S.; Li, Z.; Flores-Hansen, C.; Benavides, B. S.; Arman, H. D.; Larionov, O. V. ACS Catal. 2019, 9, 9485.  doi: 10.1021/acscatal.9b02951

    21. [21]

      Kirste, A.; Elsler, B.; Schnakenburg, G.; Waldvogel, S. R. J. Am. Chem. Soc. 2012, 134, 3571.  doi: 10.1021/ja211005g

    22. [22]

      Elsler, B.; Schollmeyer, D.; Dyballa, K. M.; Franke, R.; Waldvogel, S. R. Angew. Chem., Int. Ed. 2014, 53, 5210.

    23. [23]

      Wiebe, A.; Lips, S.; Schollmeyer, D.; Franke, R.; Waldvogel, S. R. Angew. Chem., Int. Ed. 2017, 56, 14727.  doi: 10.1002/anie.201708946

    24. [24]

      Lips, S.; Schollmeyer, D.; Franke, R.; Waldvogel, S. R. Angew. Chem., Int. Ed. 2018, 57, 13325.  doi: 10.1002/anie.201808555

    25. [25]

      Schulz, L.; Enders, M.; Elsler, B.; Schollmeyer, D.; Dyballa, K. M.; Franke, R.; Waldvogel, S. R. Angew. Chem., Int. Ed. 2017, 56, 4877.  doi: 10.1002/anie.201612613

    26. [26]

      Wu, Z. J.; Xu, H. C. Angew. Chem., Int. Ed. 2017, 56, 4734.  doi: 10.1002/anie.201701329

    27. [27]

      Zhang, G. T.; Hu, X.; Chiang, C. W.; Yi, H.; Pei, P. K.; Singh, A. K.; Lei, A. W. J. Am. Chem. Soc. 2016, 138, 12037.  doi: 10.1021/jacs.6b07411

    28. [28]

      Yi, H.; Niu, L.; Song, C.; Li, Y.; Dou, B.; Singh, A. K.; Lei, A. W. Angew. Chem., Int. Ed. 2017, 56, 1120.  doi: 10.1002/anie.201609274

    29. [29]

      Zhang, M.; Ruzi, R.; Li, N.; Xie, J.; Zhu, C. J. Org. Chem. Front. 2018, 5, 749.  doi: 10.1039/C7QO00795G

    30. [30]

      Shao, A.; Li, N.; Gao, Y.; Zhan, J.; Chiang, C.-W.; Lei, A. W. Chin. J. Chem. 2018, 36, 619.  doi: 10.1002/cjoc.201800031

    31. [31]

      Shao, A.; Zhan, J.; Li, N.; Chiang, C.-W.; Lei, A. W. J. Org. Chem. 2018, 83, 3582.  doi: 10.1021/acs.joc.7b03195

    32. [32]

      Yang, Q.; Jia, Z. B.; Li, L. J.; Zhang, L.; Luo, S. Z. Org. Chem. Front. 2018, 5, 237.  doi: 10.1039/C7QO00826K

    33. [33]

      Hu, X.; Zhang, G.; Bu, F.; Lei, A. W. Angew. Chem., Int. Ed. 2018, 57, 1286.  doi: 10.1002/anie.201711359

    34. [34]

      Tian, W.-F.; Wang, D.-P.; Wang, S.-F.; He, K.-H.; Cao, X.-P.; Li, Y. Org. Lett. 2018, 20, 1421.  doi: 10.1021/acs.orglett.8b00193

    35. [35]

      Niu, L.; Yi, H.; Wang, S.; Liu, T.; Liu, J.; Lei, A. W. Nat. Commun. 2017, 8, 14226.  doi: 10.1038/ncomms14226

    36. [36]

      Chen, H.; Yi, H.; Tang, Z. L.; Bian, C. L.; Zhang, H.; Lei, A. W. Adv. Synth. Catal. 2018, 360, 3220.  doi: 10.1002/adsc.201800531

    37. [37]

      Zhao, F. Q.; Yang, Q.; Zhang, J. J.; Shi, W. M.; Hu, H. H.; Liang, F.; Wei, W.; Zhou, S. L. Org. Lett. 2018, 20, 7753.  doi: 10.1021/acs.orglett.8b03089

    38. [38]

      Zhao, Q.-Q.; Hu, X.-Q.; Yang, M.-N.; Chen, J.-R.; Xiao, W.-J. Chem. Commun. 2016, 52, 12749.  doi: 10.1039/C6CC05897C

    39. [39]

      Zhong, J.-J.; To, W.-P.; Liu, Y.; Lu, W.; Che, C.-M. Chem. Sci. 2019, 10, 4883.  doi: 10.1039/C8SC05600E

    40. [40]

      Tang, S.; Wang, S. Y.; Liu, Y. C.; Cong, H. J.; Lei, A. W. Angew. Chem., Int. Ed. 2018, 57, 4737.  doi: 10.1002/anie.201800240

    41. [41]

      Wang, J. H.; Lei, T.; Nan, X. L.; Wu, H. L.; Li, X. B.; Chen, B.; Tung, C. H.; Wu, L. Z. Org. Lett. 2019, 21, 5581.  doi: 10.1021/acs.orglett.9b01910

    42. [42]

      Sauermann, N.; Mei, R.; Ackermann, L. Angew. Chem., Int. Ed. 2018, 57, 5090.  doi: 10.1002/anie.201802206

    43. [43]

      Gao, X. L.; Wang, P.; Zeng, L.; Tang, S.; Lei, A. W. J. Am. Chem. Soc. 2018, 140, 4195.  doi: 10.1021/jacs.7b13049

    44. [44]

      Yang, Q. L.; Wang, X. Y.; Lu, J. Y.; Zhang, L. P.; Fang, P.; Mei, T. S. J. Am. Chem. Soc. 2018, 140, 11487.  doi: 10.1021/jacs.8b07380

    45. [45]

      Zhao, H.-B.; Hou, Z.-W.; Liu, Z.-J.; Zhou, Z.-F.; Song, J.-S.; Xu, H.-C. Angew. Chem., Int. Ed. 2017, 56, 587.  doi: 10.1002/anie.201610715

    46. [46]

      Niu, L. B.; Wang, S. C.; Liu, J. M.; Yi, H.; Liang, X. A.; Liu, T. Y.; Lei, A. W. Chem. Commun. 2018, 54, 1659.  doi: 10.1039/C7CC09624K

    47. [47]

      Luo, K.; Chen, Y.-Z.; Yang, W.-C.; Zhu, J.; Wu, L. Org. Lett. 2016, 18, 452.  doi: 10.1021/acs.orglett.5b03497

    48. [48]

      Liu, W. Q.; Lei, T.; Zhou, S.; Yang, X. L.; Li, J.; Chen, B.; Sivaguru, J.; Tung, C. H.; Wu, L. Z. J. Am. Chem. Soc. 2019, 141, 13941.  doi: 10.1021/jacs.9b06920

    49. [49]

      Wang, J. H.; Li, X. B.; Li, J.; Lei, T.; Wu, H. L.; Nan, X. L.; Tung, C. H.; Wu, L. Z. Chem. Commun. 2019, 55, 10376.  doi: 10.1039/C9CC05375A

    50. [50]

      Zhang, G.; Liu, C.; Yi, H.; Meng, Q.; Bian, C.; Chen, H.; Jian, J.-X.; Wu, L.-Z.; Lei, A. W. J. Am. Chem. Soc. 2015, 137, 9273.  doi: 10.1021/jacs.5b05665

    51. [51]

      Zhang, G.; Zhang, L.; Yi, H.; Luo, Y.; Qi, X.; Tung, C.-H.; Wu, L.-Z.; Lei, A. W. Chem. Commun. 2016, 52, 10407.  doi: 10.1039/C6CC04109D

    52. [52]

      Wang, P.; Tang, S.; Huang, P. F.; Lei, A. W. Angew. Chem., Int. Ed. 2017, 56, 3009.  doi: 10.1002/anie.201700012

    53. [53]

      Yuan, Y.; Cao, Y.; Qiao, J.; Lin, Y.; Jiang, X.; Weng, Y.; Tang, S.; Lei, A. W. Chin. J. Chem. 2019, 37, 49.  doi: 10.1002/cjoc.201800405

    54. [54]

      Liu, W.-Q.; Yang, X.-L.; Tung, C.-H.; Wu, L.-Z. Acta Chim. Sinica 2019, 77, 861(in Chinese).
       

    55. [55]

      Lu, F.-L.; Yang, Z.-Z.; Wang, T.; Wang, T.-H.; Zhang, Y.-Y.; Yuan, Y.; Lei, A.-W. Chin. J. Chem. 2019, 37, 547.

    56. [56]

      Yu, W. L.; Luo, Y. C.; Yan, L.; Liu, D.; Wang, Z. Y.; Xu, P. F. Angew. Chem., Int. Ed. 2019, 58, 10941.  doi: 10.1002/anie.201904707

    57. [57]

      Li, X.-B.; Li, Z.-J.; Gao, Y.-J.; Meng, Q.-Y.; Yu, S.; Weiss, R. G.; Tung, C.-H.; Wu, L.-Z. Angew. Chem., Int. Ed. 2014, 53, 2085.  doi: 10.1002/anie.201310249

    58. [58]

      He, K.-H.; Tan, F.-F.; Zhou, C.-Z.; Zhou, G.-J.; Yang, X.-L.; Li, Y. Angew. Chem., Int. Ed. 2017, 56, 3080.  doi: 10.1002/anie.201612486

    59. [59]

      Kato, S.; Saga, Y.; Kojima, M.; Fuse, H.; Matsunaga, S.; Fukatsu, A.; Kondo, M.; Masaoka, S.; Kanai, M. J. Am. Chem. Soc. 2017, 139, 2204.  doi: 10.1021/jacs.7b00253

    60. [60]

      Yin, Q.; Oestreich, M. Angew. Chem., Int. Ed. 2017, 56, 7716.  doi: 10.1002/anie.201703536

    61. [61]

      Chai, Z. G.; Zeng, T. T.; Li, Q.; Lu, L. Q.; Xiao, W. J.; Xu, D. S. J. Am. Chem. Soc. 2016, 138, 10128.  doi: 10.1021/jacs.6b06860

    62. [62]

      Zhao, L.-M.; Meng, Q.-Y.; Fan, X.-B.; Ye, C.; Li, X.-B.; Chen, B.; Ramamurthy, V.; Tung, C.-H.; Wu, L.-Z. Angew. Chem., Int. Ed. 2017, 56, 3020.  doi: 10.1002/anie.201700243

    63. [63]

      Huang, C.; Li, X.-B.; Tung, C.-H.; Wu, L.-Z. Chem. Eur. J. 2018, 24, 11530.  doi: 10.1002/chem.201800391

    64. [64]

      Yang, X.-J.; Zheng, Y.-W.; Zheng, L.-Q.; Wu, L.-Z.; Tung, C.-H.; Chen, B. Green Chem. 2019, 21, 1401.  doi: 10.1039/C8GC03828G

    65. [65]

      Sahoo, M. K.; Saravanakumar, K.; Jaiswal, G.; Balaraman, E. ACS Catal. 2018, 8, 7727.  doi: 10.1021/acscatal.8b01579

    66. [66]

      West, J. G.; Huang, D.; Sorensen, E. J. Nat. Commun. 2015, 6, 10093.  doi: 10.1038/ncomms10093

    67. [67]

      Zhong, J.-J.; Wu, C.-J.; Meng, Q.-Y.; Gao, X.-W.; Lei, T.; Tung, C.-H.; Wu, L.-Z. Adv. Synth. Catal. 2014, 356, 2846.  doi: 10.1002/adsc.201400588

    68. [68]

      Yang, X. L.; Guo, J. D.; Lei, T.; Chen, B.; Tung, C. H.; Wu, L. Z. Org. Lett. 2018, 20, 2916.  doi: 10.1021/acs.orglett.8b00977

    69. [69]

      Yang, Q.; Zhang, L.; Ye, C.; Luo, S. Z.; Wu, L.-Z.; Tung, C.-H. Angew. Chem., Int. Ed. 2017, 56, 3694.  doi: 10.1002/anie.201700572

    70. [70]

      Zheng, Y.-W.; Chen, B.; Ye, P.; Feng, K.; Wang, W.; Meng, Q.-Y.; Wu, L.-Z.; Tung, C.-H. J. Am. Chem. Soc. 2016, 138, 10080.  doi: 10.1021/jacs.6b05498

    71. [71]

      Zheng, Y.-W.; Ye, P.; Chen, B.; Meng, Q.-Y.; Feng, K.; Wang, W.; Wu, L.-Z.; Tung, C.-H. Org. Lett. 2017, 19, 2206.  doi: 10.1021/acs.orglett.7b00463

    72. [72]

      Su, X. J. Am. Chem. Soc. 2013, 135, 19047.  doi: 10.1021/ja4125912

    73. [73]

      Su, X. J. Am. Chem. Soc. 2016, 138, 11409.  doi: 10.1021/jacs.6b09146

    74. [74]

      Ravelli, D.; Fagnoni, M.; Albini, A. Chem. Soc. Rev. 2013, 42, 97.  doi: 10.1039/C2CS35250H

    75. [75]

      Yi, H.; Niu, L. B.; Song, C. L.; Li, Y. Y.; Dou, B. W.; Singh, A. K.; Lei, A. W. Angew. Chem. 2017, 129, 1140.  doi: 10.1002/ange.201609274

    76. [76]

      Tang, S.; Gao, X. L.; Lei, A. W. Chem. Commun. 2017, 53, 3354.  doi: 10.1039/C7CC00410A

    77. [77]

      He, K.-H.; Li, Y. ChemSusChem 2014, 7, 2788.  doi: 10.1002/cssc.201402606

    78. [78]

      Li, W.-H.; Wu, L.; Li, S.-S.; Liu, C.-F.; Zhang, G.-T.; Dong, L. Chem. Eur. J. 2016, 22, 17926.  doi: 10.1002/chem.201603887

    79. [79]

      Chen, C.; Chen, X.; Zhao, H.; Jiang, H.; Zhang, M. Org. Lett. 2017, 19, 3390.  doi: 10.1021/acs.orglett.7b01349

    80. [80]

      Ren, L.-J.; Ran, M.-G.; He, J.-X.; Qian, Y.; Yao, Q.-L. Chin. J. Org. Chem. 2019, 39, 1583(in Chinese).

  • 加载中
    1. [1]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    2. [2]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    3. [3]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    4. [4]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    5. [5]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    6. [6]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    7. [7]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    8. [8]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    9. [9]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    10. [10]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    11. [11]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    12. [12]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    13. [13]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    14. [14]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    15. [15]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    16. [16]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    17. [17]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    18. [18]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    19. [19]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    20. [20]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

Metrics
  • PDF Downloads(37)
  • Abstract views(1875)
  • HTML views(392)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return