Citation: Yang Ying, Lin Feiyu, Zhu Congtan, Chen Tian, Ma Shupeng, Luo Yuan, Zhu Liu, Guo Xueyi. Research Progress in the Stability of Inorganic Perovskite Solar Cells[J]. Acta Chimica Sinica, ;2020, 78(3): 217-231. doi: 10.6023/A19110411 shu

Research Progress in the Stability of Inorganic Perovskite Solar Cells

  • Corresponding author: Guo Xueyi, xyguo@csu.edu.cn
  • Received Date: 22 November 2019
    Available Online: 13 January 2020

    Fund Project: Scientific Research Foundation for the Returned overseas Chinese Scholar; Postgraduate Independent Exploration and Innovation Projects of Central South University 2019zzts944Project supported by the National Natural Science Foundation of China (No. 61774169), Scientific Research Foundation for the Returned overseas Chinese Scholar; Postgraduate Independent Exploration and Innovation Projects of Central South University (Nos. 2019zzts944, 502211922)Scientific Research Foundation for the Returned overseas Chinese Scholar; Postgraduate Independent Exploration and Innovation Projects of Central South University 502211922the National Natural Science Foundation of China 61774169

Figures(10)

  • In recent years, the efficiency of perovskite solar cells has developed rapidly, but its stability is limited by the influence of heat, light and water. All-inorganic perovskite formed by inorganic cations instead of organic cations shows improved thermal stability, high light absorption and adjustable band gap. The photoelectric conversion efficiency of all-inorganic perovskite solar cells has been improved to 19.03% at present. Among them, CsPbI3 perovskite solar cells have good photoelectric performance but poor stability, while CsPbBr3 perovskite solar cells have excellent stability but poor photoelectric performance of devices. In this paper, the influence of preparation method, film doping and interface modification on the stability of inorganic perovskite solar cells is systematically summarized. The reasons behind the instability of inorganic perovskite and the improvement methods are emphatically analyzed. In conclusion, improving the stability of inorganic perovskite light absorbing materials by film doping, surface passivation and morphology control such as low dimensional materials preparation can effectively improve the stability of the overall device, which provides the basis for further commercialization. In addition, it is of great significance to study the theory of charge transfer and recombination and establish a complete theoretical system for improving the performance and stability of the device. At present, most of perovskite contains harmful elements Pb. How to replace Pb and find new materials applied in perovskite solar cells is also the future development trend. In a word, as a new type of solar cell, inorganic perovskite solar cell is expected to contribute to the photovoltaic development of the future society.
  • 加载中
    1. [1]

      Hodes, G. Science 2013, 342, 317.  doi: 10.1126/science.1245473

    2. [2]

      Liu, C.; Li, W.; Zhang, C.; Ma, Y.; Fan, J.; Mai, Y. J. Am. Chem. Soc. 2018, 140, 3825.  doi: 10.1021/jacs.7b13229

    3. [3]

      Lee, M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Science 2013, 338, 643.

    4. [4]

      Heo, J. H.; Im, S. H.; Noh, J. H.; Mandal, T. N.; Lim, C. S.; Chang, J. A.; Lee, Y. H.; Kim, H. J.; Sarkar, A. Nat. Photonics 2013, 7, 486.  doi: 10.1038/nphoton.2013.80

    5. [5]

      Guo, X. D.; Niu, G. D.; Wang, L. D. Acta Chim. Sinica 2015, 73, 211 (in Chinese).  doi: 10.3866/PKU.WHXB201412231
       

    6. [6]

      Chen, X.; Xie, J.; Wang, W.; Yuan, H.; Xu, D.; Zhang, D.; He, Y.; Shen, H. Acta Chim. Sinica 2019, 77, 9 (in Chinese).  doi: 10.3866/PKU.WHXB201711141
       

    7. [7]

      Yang, Y.; Chen, T.; Pan, D.; Zhang, Z.; Guo, X. Acta Chim. Sinica 2018, 76, 681 (in Chinese).  doi: 10.7503/cjcu20170596
       

    8. [8]

      Wu, M.; Liu, S.; Chen, H.; Wei, X.; Li, M.; Yang, Z.; Ma, X. Acta Chim. Sinica 2018, 76, 49 (in Chinese).  doi: 10.3866/PKU.WHXB201707041
       

    9. [9]

      https://www.nrel.gov/pv/assets/images/thumb-best-research-cell-efficiencies-190416.png accessed July 2019.

    10. [10]

      Koh, T. M.; Fu, K.; Fang, Y.; Chen, S.; Sum, T. C.; Mathews, N.; Mhaisalkar, S. G.; Boix, P. P.; Baikie, T. J. Phys. Chem. C 2014, 118, 16458.  doi: 10.1021/jp411112k

    11. [11]

      Aharon, S.; Dymshits, A.; Rotem, A.; Etgar, L. J. Mater. Chem. A 2015, 3, 9171.  doi: 10.1039/C4TA05149A

    12. [12]

      Fu, Y.; Zhu, H.; Schrader, A. W.; Liang, D.; Ding, Q.; Joshi, P.; Wang, L. H.; Zhu, X.; Jin, S. Nano Lett. 2016, 16, 1000.  doi: 10.1021/acs.nanolett.5b04053

    13. [13]

      Lee, J.; Kim, D.; Kim, H.; Seo, S.; Cho, S. M.; Park, N. Adv. Energy Mater. 2015, 5, 1501310.  doi: 10.1002/aenm.201501310

    14. [14]

      Saliba, M.; Matsui, T.; Seo, J. Y.; Domanski, K.; Correa-Baena, S. M.; Tress, W.; Abate, A.; Hagfeldt, A.; Grätzel, M. Energy Environ. Sci. 2016, 9, 1989.  doi: 10.1039/C5EE03874J

    15. [15]

      Smith, I. C.; Hoke, E. T.; Solis-Ibarra, D.; McGehee, M. D.; Karunadasa, H. I. Angew. Chem., Int. Ed. 2014, 53, 11232.  doi: 10.1002/anie.201406466

    16. [16]

      Guarnera, S.; Abate, A.; Zhang, W.; Foster, J. M.; Richardson, G.; Petrozza, A.; Snaith, H. J. J. Phys. Chem. Lett. 2015, 6, 432.  doi: 10.1021/jz502703p

    17. [17]

      Hwang, I.; Jeong, I.; Lee, J.; Ko, M. J.; Yong, K. ACS Appl. Mater. Interfaces 2015, 7, 17330.  doi: 10.1021/acsami.5b04490

    18. [18]

      Yang, Y.; Wang, W. J. Power Sources 2015, 293, 577.  doi: 10.1016/j.jpowsour.2015.05.081

    19. [19]

      Yang, Y.; Chen, T.; Pan, D.; Gao, J.; Zhu, C.; Lin, F.; Zhou, C.; Tai, Q.; Xiao, S.; Yuan, Y.; Dai, Q.; Han, Y.; Xie, H.; Guo, X. Nano Energy 2020, 47, 104246.

    20. [20]

      Wang, D.; Wright, M.; Elumalai, N. K.; Uddin, A. Sol. Energy Mater. 2016, 147, 255.  doi: 10.1016/j.solmat.2015.12.025

    21. [21]

      Park, N. G.; Grätzel, M.; Miyasaka, T.; Zhu, K.; Emery, K. Nature Energy 2016, 1, 16152.  doi: 10.1038/nenergy.2016.152

    22. [22]

      Kim, H. S.; Seo, J. Y.; Park, N. G. ChemSusChem 2016, 9, 2528.  doi: 10.1002/cssc.201600915

    23. [23]

      Manser, J. S.; Saidaminov, M. I.; Christians, J. A.; Bakr, O. M.; Kamat, P. V. Acc. Chem. Res. 2016, 49, 330.  doi: 10.1021/acs.accounts.5b00455

    24. [24]

      Chen, Z.; Wang, J.; Ren, Y.; Yu, C.; Shum, K. Appl. Phys. Lett. 2012, 101, 093901.  doi: 10.1063/1.4748888

    25. [25]

      Kulbak, M.; Cahen, D.; Hodes, G. J. Phys. Chem. Lett. 2015, 6, 2452.  doi: 10.1021/acs.jpclett.5b00968

    26. [26]

      Niezgoda, J. S.; Foley, B. J.; Chen, A. Z.; Choi, J. J. ACS Energy Lett. 2017, 2, 1043.  doi: 10.1021/acsenergylett.7b00258

    27. [27]

      Frolova, L. A.; Anokhin, D. V.; Piryazev, A. A.; Luchkin, S. Y.; Dremova, N. N.; Stevenson, K. J.; Troshin, P. A. J. Phys. Chem. Lett. 2017, 8, 67.  doi: 10.1021/acs.jpclett.6b02594

    28. [28]

      Chen, C.; Lin, H.; Chiang, K.; Tsai, W.; Huang, Y.; Tsao, C.; Lin, H. Adv. Mater. 2017, 29, 1605290.  doi: 10.1002/adma.201605290

    29. [29]

      Nam, J. K.; Jung, M. S.; Chai, S. U.; Choi, Y. J.; Kim, D.; Park, J. H. J. Phys. Chem. Lett. 2017, 8, 2936.  doi: 10.1021/acs.jpclett.7b01067

    30. [30]

      Nam, J. K.; Chai, S. U.; Cha, W.; Choi, Y. J.; Kim, W.; Jung, M. S.; Kwon, J.; Kim, D.; Park, J. H. Nano Lett. 2017, 17, 2028.  doi: 10.1021/acs.nanolett.7b00050

    31. [31]

      Wang, Y.; Liu, X.; Zhang, T.; Wang, X.; Kan, M.; Shi, J.; Zhao, Y. Angew. Chem., Int. Ed. 2018, 58, 16691.

    32. [32]

      Liu, C.; Li, W.; Chen, J.; Fan, J.; Mai, Y.; Schropp, R. E. Nano Energy 2017, 41, 75.  doi: 10.1016/j.nanoen.2017.08.048

    33. [33]

      Jiang, J. X.; Wang, Q.; Jin, Z. W.; Zhang, X. S.; Lei, J.; Bin, H. J.; Zhang, Z.; Li, Y.; Liu, S. Adv. Energy Mater. 2018, 8, 1701757.  doi: 10.1002/aenm.201701757

    34. [34]

      Giustino, F.; Snaith, H. J. ACS Energy Lett. 2016, 1, 1233.  doi: 10.1021/acsenergylett.6b00499

    35. [35]

      Li, Z.; Yang, M. J.; Park, J. S.; Wei, S. H.; Berry, J. J.; Zhu, K. Chem. Mater. 2016, 28, 284.  doi: 10.1021/acs.chemmater.5b04107

    36. [36]

      Marchioro, A.; Teuscher, J.; Friedrich, D.; Kunst, M.; Krol, R.; Moehl, T.; Gratzel, M.; Moser, J. E. Nat. Photonics 2014, 8, 250.  doi: 10.1038/nphoton.2013.374

    37. [37]

      Yang, W.; Noh, J.; Jeon, J.; Kim, Y.; Ryu, S.; Seo, J.; Seok, S. Science 2015, 348, 1234.  doi: 10.1126/science.aaa9272

    38. [38]

      Wang, P. Y.; Zhang, X. W.; Zhou, Y. Q.; Jiang, Q.; Ye, Q. F.; Chu, Z.; Li, X. X.; Yang, X. L.; Yin, Z. G.; You, J. B. Nat. Commun. 2018, 9, 2225.  doi: 10.1038/s41467-018-04636-4

    39. [39]

      Yin, G.; Zhao, H.; Jiang, H.; Yuan, S. H.; Niu, T. Q.; Zhao, K.; Liu, Z.; Liu, S. Adv. Funct. Mater. 2018, 1803269.

    40. [40]

      Chen, W.; Chen, H.; Xu, G.; Xue, R.; Wang, S.; Li, Y.; Li, Y. Joule 2018, 10, 011.

    41. [41]

      Wang, Z.; Liu, X.; Lin, Y.; Liao, Y.; Wei, Q.; Chen, H.; Qiu, J.; Chen, Y.; Zheng, Y. J. Mater. Chem. A 2019, 7, 2773.  doi: 10.1039/C8TA09855G

    42. [42]

      Duan, J.; Zhao, Y.; He, B.; Tang, Q. Angew. Chem., Int. Ed. 2018, 57, 3787.  doi: 10.1002/anie.201800019

    43. [43]

      Yu, B.; Zhang, H.; Wu, J.; Li, Y.; Meng, Q. J. Mater. Chem. A 2018, 6, 19810.  doi: 10.1039/C8TA07968D

    44. [44]

      Cho, F. J.; Deng, X. F.; Ma, Q. S.; Zheng, J. H.; Jae, S. Y. ACS Energy Lett. 2016, 1, 573.  doi: 10.1021/acsenergylett.6b00341

    45. [45]

      Ma, Q. S.; Huang, S. J.; Wen, X. M.; Martin, A. G.; Anita, W. Y. Adv. Energy Mater. 2016, 6, 1502202.  doi: 10.1002/aenm.201502202

    46. [46]

      Lei, J.; Gao, F.; Wang, H. X.; Li, J.; Jiang, J.; Wu, X.; Gao, R.; Yang, Z.; Liu, S. Sol. Energy Mater. Sol. Cells 2018, 187, 1.  doi: 10.1016/j.solmat.2018.07.009

    47. [47]

      Jae, K. N.; Sung, U. K.; Cha, W.; Choi, Y. J.; Kim, W. J. Nano Lett. 2017, 17, 2028.  doi: 10.1021/acs.nanolett.7b00050

    48. [48]

      Guo, Y.; Zhao, F.; Tao, J.; Jiang, J.; Zhang, J.; Yang, J.; Hu, Z.; Chu, J. ChemSusChem 2018, 2, 690.

    49. [49]

      Liang, J.; Zhao, P. Y.; Wang, C. X.; Wang, Y. R.; Hu, Y.; Zhu, G. Y.; Ma, L. B.; Liu, J.; Jin, Z. J. Am. Chem. Soc. 2017, 139, 14009.  doi: 10.1021/jacs.7b07949

    50. [50]

      Yang, F.; Daisuke, H.; Gaurav, K.; Muhammad, A. K.; Chi, H. N.; Zhang, Y. H.; Shen, Q.; Hayase, S. Z. Angew. Chem., Int. Ed. 2018, 57, 12745.  doi: 10.1002/anie.201807270

    51. [51]

      Duan, J.; Zhao, Y.; Yang, X.; Wang, Y.; He, B.; Tang, Q. Adv. Energy Mater. 2018, 8, 1802346.  doi: 10.1002/aenm.201802346

    52. [52]

      Xiang, W. C.; Wang, Z. W.; Kubicki, D. J.; Tress, W. G.; Luo, J. S.; Daniel, P.; Seckin, A. Joule 2019, 3, 205.  doi: 10.1016/j.joule.2018.10.008

    53. [53]

      Cho, F. J. L.; Deng, X. F.; Zheng, J. H.; Kim, J.; Zhang, Z. L.; Zhang, M. J. Mater. Chem. A 2018, 6, 5580.  doi: 10.1039/C7TA11154A

    54. [54]

      Fai, C.; Lau, J.; Zhang, M.; Deng, X. F.; Zheng, J.; Bing, J. M.; Ma, Q. S.; Kim, J.; Hu, L.; Huang, S. ACS Energy Lett. 2017, 2, 2391.

    55. [55]

      Li, Y.; Huang, Y.; Wei, J.; Liu, F.; Shao, Z.; Hu, L.; Chen, S.; Yang, S.; Tang, J.; Yao, J.; Dai, S. Nanoscale 2015, 7, 9902.  doi: 10.1039/C5NR00420A

    56. [56]

      Guo, X. Y.; Gao, J.; Zhang, Z.; Xiao, S.; Pan, D. Q.; Zhou, C. H.; Shen, J. Q.; Hong, J. B.; Yang, Y. Mater. Today Energy 2017, 5, 320.  doi: 10.1016/j.mtener.2017.07.013

    57. [57]

      Zhang, Z.; Yang, Y.; Gao, J.; Xiao, S.; Zhou, C. H.; Pan, D. Q.; Liu, G.; Guo, X. Y. Mater. Today Energy 2017, 7, 27.

    58. [58]

      Yang, Y.; Pan, D. Q.; Zhang, Z.; Chen, T.; Xie, H. Y.; Gao, J.; Guo, X. Y. J. Alloys. Compd. 2018, 766, 925.  doi: 10.1016/j.jallcom.2018.07.022

    59. [59]

      Yang, Y.; Gao, J.; Zhang, Z.; Xiao, S.; Xie, H. H.; Sun, Z. B.; Wang, J. H.; Zhou, C. H.; Wang, Y. W.; Guo, X. Y.; Chu, P. K.; Yu, X. F. Adv. Mater. 2016, 28, 8937.  doi: 10.1002/adma.201602382

    60. [60]

      Yuan, H.; Zhao, Y.; Duan, J.; He, B.; Jiao, Z.; Tang, Q. Electrochim. Acta 2018, 279, 84.  doi: 10.1016/j.electacta.2018.05.087

    61. [61]

      Yan, L.; Xue, Q.; Liu, M.; Zhu, Z.; Tian, J.; Li, Z.; Chen, Z.; Chen, Z.; Yan, H. Adv. Mater. 2018, 1802509.

    62. [62]

      Kulbak, M.; Gupta, S.; Kedem, N.; Levine, I.; Bendikov, T.; Hodes, G.; Cahen, D. J. Phys. Chem. Lett. 2016, 7, 167.  doi: 10.1021/acs.jpclett.5b02597

    63. [63]

      Yuan, H.; Zhao, Y.; Duan, J.; Wang, Y..; Ynag, X.; Tang, Q. J. Mater. Chem. A 2018, 6, 24324.  doi: 10.1039/C8TA08900K

    64. [64]

      Wang, Y.; Zhang, T.; Kan, M.; Zhao, Y. J. Am. Chem. Soc. 2018, 140, 12345.  doi: 10.1021/jacs.8b07927

    65. [65]

      Shen, E.; Chen, J.; Tian, Y.; Luo, Y.; Shen, Y.; Sun, Q.; Jin, T.; Shi, G.; Li, Y.; Tang, J. Adv. Sci. 2019, 1901952.

    66. [66]

      Bai, D.; Bian, H.; Jin, Z.; Wang, H.; Meng, L.; Wang, Q.; Liu, S. Nano Energy 2018, 52, 408.  doi: 10.1016/j.nanoen.2018.08.012

    67. [67]

      Aristidou, N.; Eames, C.; Sanchez-Molina, I.; Bu, X.; Kosco, J.; Islam, M. S.; Haque, S. A. Nat. Commun. 2017, 8, 15218.  doi: 10.1038/ncomms15218

    68. [68]

      Stoumpos. C. C.; Kanatzidis, M. G. Acc. Chem. Res. 2015, 48, 2791.  doi: 10.1021/acs.accounts.5b00229

    69. [69]

      Xiao, S.; Li, Z.; Guthrey, H.; Moseley, J.; Yang, Y.; Wozny, S.; Moutinho, H.; To, B.; Berry, J.; Gorman, B.; Yan, Y.; Zhu, K.; Al-Jassim, M. J. Phys. Chem. C 2015, 119, 26904.  doi: 10.1021/acs.jpcc.5b09698

    70. [70]

      Duan, J.; Xu, H.; Sha, W.; Zhao, Y.; Wang, Y.; Yang, X.; Tang, Q. J. Mater. Chem. A 2019, 7, 21036.  doi: 10.1039/C9TA06674H

    71. [71]

      Travis, W.; Glover, E. N. K.; Bronstein, H.; Scanlon, D. O.; Palgrave, R. G. Chem. Sci. 2016, 7, 4548.  doi: 10.1039/C5SC04845A

    72. [72]

      Ahmad, W.; Khan, J.; Niu, G. D.; Tang, J. Sol. RRL. 2017, 1, 1700048.  doi: 10.1002/solr.201700048

    73. [73]

      Eperon, G. E.; Paterno, G. M.; Sutton, R. J.; Zampetti, A.; Haghighirad, A. A.; Cacialli, F.; Snaith, H. J. J. Mater. Chem. A 2015, 3, 19688.  doi: 10.1039/C5TA06398A

    74. [74]

      Swarnkar, A.; Marshall, A. R.; Sanehira, E. M.; Chernomordik, B. D.; Moore, D. T.; Christians, J. A.; Chakrabarti, T.; Luther, J. M. Science 2016, 354, 92.  doi: 10.1126/science.aag2700

    75. [75]

      Sanehira, E. M.; Marshall, A. R.; Christians, J. A.; Harvey, S. P.; Ciesielski, P. N.; Wheeler, L. M.; Schulz, P.; Lin, L. Y.; Beard, M. C.; Luther, J. M. Sci. Adv. 2017, 3, eaao4204.  doi: 10.1126/sciadv.aao4204

    76. [76]

      Wang, Q.; Jin, Z.; Chen, D.; Bai, D.; Bian, H.; Sun, J.; Zhu, G.; Wang, G.; Liu, S. Adv. Energy Mater. 2018, 1800007.

    77. [77]

      Smith, L. C.; Hoke, D.; Solis-Ibarra, D.; McGehee, M.; Karunadasa, H. Angew. Chem., Int. Ed. 2014, 53, 11232.  doi: 10.1002/anie.201406466

    78. [78]

      Luo, P.; Xia, W.; Zhou, S. W.; Sun, L.; Cheng, J.; Xu, C.; Lu, Y. J. Phys. Chem. Lett. 2016, 7, 3603.  doi: 10.1021/acs.jpclett.6b01576

    79. [79]

      Wang, Y.; Dar, M. I.; Ono, L.; Zhang, T.; Kan, M.; Li, Y.; Zhang, L.; Wang, X.; Yang, Y.; Gao, X.; Qi, Y.; Grätzel, M.; Zhao, Y. Science 2019, 365, 591.  doi: 10.1126/science.aav8680

    80. [80]

      Fu, Y.; Rea, M. T.; Chen, J.; Morrow, D. J.; Hautzinger, M. P.; Zhao, Y.; Pan, D.; Manger, L. H.; Wright, J. C.; Goldsmith, R. H.; Jin, S. Chem. Mater. 2017, 29, 8385.  doi: 10.1021/acs.chemmater.7b02948

    81. [81]

      Wang, Q.; Zheng, X.; Deng, Y.; Zhao, J.; Chen, Z.; Huang, J. Joule 2017, 1, 1.  doi: 10.1016/j.joule.2017.08.015

    82. [82]

      Wang, K.; Jin, Z.; Liang, L.; Bian, H.; Bai, D.; Wang, H.; Zhang, J.; Wang, Q.; Liu, S. Nat. Commun. 2018, 9, 4544.  doi: 10.1038/s41467-018-06915-6

    83. [83]

      Xiang, S.; Li, W.; Wei, Y.; Liu, J.; Liu, H.; Zhu, L.; Chen, H. Nanoscale 2018, 10, 9996.  doi: 10.1039/C7NR09657G

    84. [84]

      Hu, Y.; Bai, F.; Liu, X.; Ji, Q.; Miao, X.; Qiu, T.; Zhang, S. ACS Energy Lett. 2017, 2, 2219.  doi: 10.1021/acsenergylett.7b00508

    85. [85]

      J ena, A. K.; Kulkarni, A.; Sanehira, Y.; Ikegami, M.; Miyasaka, T. Chem. Mater. 2018, 30, 6668.  doi: 10.1021/acs.chemmater.8b01808

    86. [86]

      Nam, J. K.; Jung, M. S.; Chai, S. U.; Choi, Y. J.; Kim, D.; Park, J. H. J. Phys. Chem. Lett. 2017, 8, 2936.  doi: 10.1021/acs.jpclett.7b01067

    87. [87]

      Fu, L.; Zhang, Y.; Li, B.; Zhou, S.; Zhang, L.; Yin, L. J. Mater. Chem. A 2018, 6, 13263.  doi: 10.1039/C8TA02899K

    88. [88]

      Bai, D.; Zhang, J.; Jin, Z.; Bian, H.; Wang, K.; Wang, H.; Liang, L.; Wang, Q.; Liu, S. ACS Energy Lett. 2018, 3, 970.  doi: 10.1021/acsenergylett.8b00270

    89. [89]

      Beal, R. E.; Slotcavage, D. J.; Leijtens, T.; Bowring, A. R.; Belisle, R. A.; Nguyen, W. H.; Burkhard, G. F.; Hoke, E. T.; McGehee, M. D. J. Phys. Chem. Lett. 2016, 7, 746.  doi: 10.1021/acs.jpclett.6b00002

    90. [90]

      Li, W.; Rothmann, M. U.; Liu, A.; Wang, Z. Y.; Zhang, Y. P.; Pascoe, A. R.; Lu, J. F.; Jiang, L. C.; Chen, Y.; Huang, F. Z.; Peng, Y.; Bao, Q. L.; Etheridge, J.; Bach, U.; Cheng, Y. B. Adv. Energy Mater. 2017, 7, 1700946.  doi: 10.1002/aenm.201700946

    91. [91]

      Zeng, Z.; Zhang, J.; Gan, X.; Sun, H.; Shang, M.; Hou, D.; Lu, C.; Chen, R.; Zhu, Y.; Han, L. Adv. Energy Mater. 2018, 8, 1801050.  doi: 10.1002/aenm.201801050

    92. [92]

      Zeng, Q.; Zhang, X.; Feng, X.; Lu, S.; Chen, Z.; Yong, X.; Redfern, S. A. T.; Wei, H.; Wang, H.; Shen, H.; Zhang, W.; Zheng, W.; Zhang, H.; Tse, J. S.; Yang, B. Adv. Mater. 2018, 30, 1705393.  doi: 10.1002/adma.201705393

    93. [93]

      Ma, Q. S.; Huang, S. J.; Wen, X. M.; Green, M. A.; Ho-Bailie, A. W. Y. Adv. Energy. Mater. 2016, 6, 1502202.  doi: 10.1002/aenm.201502202

    94. [94]

      Zhu, W.; Zhang. Q.; Chen, D.; Zhang, Z.; Lin, Z.; Chang, J.; Zhang, J.; Zhang, C.; Hao, Y. Adv. Energy. Mater. 2018, 8, 1802080.  doi: 10.1002/aenm.201802080

    95. [95]

      Jiang, Y.; Yuan, J.; Ni, Y.; Yang, J.; Wang, Y.; Jiu, T.; Yuan, M.; Chen, J. Joule 2018, 2, 1356.  doi: 10.1016/j.joule.2018.05.004

    96. [96]

      MØLler, C. K. Nature 1958, 182, 1436.

    97. [97]

      Kulbak, M.; Cahen, D.; Hodes, G. J. Phys. Chem. Lett. 2015, 6, 2452.  doi: 10.1021/acs.jpclett.5b00968

    98. [98]

      Liang, J.; Wang, C.; Wang, Y.; Xu, Z.; Lu, Z.; Zhu, H.; Xiao, C.; Yi, X. J. Am. Chem. Soc. 2016, 138, 15829.  doi: 10.1021/jacs.6b10227

    99. [99]

      Li, Y.; Wang, Y.; Zhang, T.; Yoriya, S.; Kumnorkaew, P.; Chen, S.; Guo, X.; Zhao, Y. Chem. Commun. 2018, 54, 9089.

    100. [100]

      Bai, D. L.; Bian, H.; Jin, Z. W.; Wang, H. R.; Meng, L.; Wang, Q.; Liu, S. Z. Nano Energy 2018, 52, 408.  doi: 10.1016/j.nanoen.2018.08.012

    101. [101]

      Zhang, Q.; Zhu, W.; Chen, D.; Zhang, Z.; Lin, Z.; Chang, J.; Zhang, J.; Zhang, C.; Hao, Y. ACS Appl. Mater. Interfaces 2019, 11, 2997.  doi: 10.1021/acsami.8b17839

    102. [102]

      Fu, Y. P.; Rea, M. T.; Chen, J.; Morrow, D. J.; Hautzinger, M. P.; Zhao, Y. Z.; Pan, D. X.; Manger, L. H.; Wright, J. C.; Goldsmith, R. H.; Jin, S. Chem. Mater. 2017, 29, 8385.  doi: 10.1021/acs.chemmater.7b02948

    103. [103]

      Chen, Y. C.; Xiao, Y. Y.; Meng, Q.; Han, C. B.; Yan, H.; Zhang, Y. Z. Nano Energy 2020, 67, 104249.  doi: 10.1016/j.nanoen.2019.104249

  • 加载中
    1. [1]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    2. [2]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    3. [3]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    4. [4]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    5. [5]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    6. [6]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    7. [7]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    8. [8]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    9. [9]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    10. [10]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    11. [11]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    12. [12]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    13. [13]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    14. [14]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    15. [15]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    16. [16]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    17. [17]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    18. [18]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    19. [19]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    20. [20]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

Metrics
  • PDF Downloads(123)
  • Abstract views(5852)
  • HTML views(1421)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return