Research Progress in the Stability of Inorganic Perovskite Solar Cells
- Corresponding author: Guo Xueyi, xyguo@csu.edu.cn
Citation: Yang Ying, Lin Feiyu, Zhu Congtan, Chen Tian, Ma Shupeng, Luo Yuan, Zhu Liu, Guo Xueyi. Research Progress in the Stability of Inorganic Perovskite Solar Cells[J]. Acta Chimica Sinica, ;2020, 78(3): 217-231. doi: 10.6023/A19110411
Hodes, G. Science 2013, 342, 317.
doi: 10.1126/science.1245473
Liu, C.; Li, W.; Zhang, C.; Ma, Y.; Fan, J.; Mai, Y. J. Am. Chem. Soc. 2018, 140, 3825.
doi: 10.1021/jacs.7b13229
Lee, M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Science 2013, 338, 643.
Heo, J. H.; Im, S. H.; Noh, J. H.; Mandal, T. N.; Lim, C. S.; Chang, J. A.; Lee, Y. H.; Kim, H. J.; Sarkar, A. Nat. Photonics 2013, 7, 486.
doi: 10.1038/nphoton.2013.80
Guo, X. D.; Niu, G. D.; Wang, L. D. Acta Chim. Sinica 2015, 73, 211 (in Chinese).
doi: 10.3866/PKU.WHXB201412231
Chen, X.; Xie, J.; Wang, W.; Yuan, H.; Xu, D.; Zhang, D.; He, Y.; Shen, H. Acta Chim. Sinica 2019, 77, 9 (in Chinese).
doi: 10.3866/PKU.WHXB201711141
Yang, Y.; Chen, T.; Pan, D.; Zhang, Z.; Guo, X. Acta Chim. Sinica 2018, 76, 681 (in Chinese).
doi: 10.7503/cjcu20170596
Wu, M.; Liu, S.; Chen, H.; Wei, X.; Li, M.; Yang, Z.; Ma, X. Acta Chim. Sinica 2018, 76, 49 (in Chinese).
doi: 10.3866/PKU.WHXB201707041
https://www.nrel.gov/pv/assets/images/thumb-best-research-cell-efficiencies-190416.png accessed July 2019.
Koh, T. M.; Fu, K.; Fang, Y.; Chen, S.; Sum, T. C.; Mathews, N.; Mhaisalkar, S. G.; Boix, P. P.; Baikie, T. J. Phys. Chem. C 2014, 118, 16458.
doi: 10.1021/jp411112k
Aharon, S.; Dymshits, A.; Rotem, A.; Etgar, L. J. Mater. Chem. A 2015, 3, 9171.
doi: 10.1039/C4TA05149A
Fu, Y.; Zhu, H.; Schrader, A. W.; Liang, D.; Ding, Q.; Joshi, P.; Wang, L. H.; Zhu, X.; Jin, S. Nano Lett. 2016, 16, 1000.
doi: 10.1021/acs.nanolett.5b04053
Lee, J.; Kim, D.; Kim, H.; Seo, S.; Cho, S. M.; Park, N. Adv. Energy Mater. 2015, 5, 1501310.
doi: 10.1002/aenm.201501310
Saliba, M.; Matsui, T.; Seo, J. Y.; Domanski, K.; Correa-Baena, S. M.; Tress, W.; Abate, A.; Hagfeldt, A.; Grätzel, M. Energy Environ. Sci. 2016, 9, 1989.
doi: 10.1039/C5EE03874J
Smith, I. C.; Hoke, E. T.; Solis-Ibarra, D.; McGehee, M. D.; Karunadasa, H. I. Angew. Chem., Int. Ed. 2014, 53, 11232.
doi: 10.1002/anie.201406466
Guarnera, S.; Abate, A.; Zhang, W.; Foster, J. M.; Richardson, G.; Petrozza, A.; Snaith, H. J. J. Phys. Chem. Lett. 2015, 6, 432.
doi: 10.1021/jz502703p
Hwang, I.; Jeong, I.; Lee, J.; Ko, M. J.; Yong, K. ACS Appl. Mater. Interfaces 2015, 7, 17330.
doi: 10.1021/acsami.5b04490
Yang, Y.; Wang, W. J. Power Sources 2015, 293, 577.
doi: 10.1016/j.jpowsour.2015.05.081
Yang, Y.; Chen, T.; Pan, D.; Gao, J.; Zhu, C.; Lin, F.; Zhou, C.; Tai, Q.; Xiao, S.; Yuan, Y.; Dai, Q.; Han, Y.; Xie, H.; Guo, X. Nano Energy 2020, 47, 104246.
Wang, D.; Wright, M.; Elumalai, N. K.; Uddin, A. Sol. Energy Mater. 2016, 147, 255.
doi: 10.1016/j.solmat.2015.12.025
Park, N. G.; Grätzel, M.; Miyasaka, T.; Zhu, K.; Emery, K. Nature Energy 2016, 1, 16152.
doi: 10.1038/nenergy.2016.152
Kim, H. S.; Seo, J. Y.; Park, N. G. ChemSusChem 2016, 9, 2528.
doi: 10.1002/cssc.201600915
Manser, J. S.; Saidaminov, M. I.; Christians, J. A.; Bakr, O. M.; Kamat, P. V. Acc. Chem. Res. 2016, 49, 330.
doi: 10.1021/acs.accounts.5b00455
Chen, Z.; Wang, J.; Ren, Y.; Yu, C.; Shum, K. Appl. Phys. Lett. 2012, 101, 093901.
doi: 10.1063/1.4748888
Kulbak, M.; Cahen, D.; Hodes, G. J. Phys. Chem. Lett. 2015, 6, 2452.
doi: 10.1021/acs.jpclett.5b00968
Niezgoda, J. S.; Foley, B. J.; Chen, A. Z.; Choi, J. J. ACS Energy Lett. 2017, 2, 1043.
doi: 10.1021/acsenergylett.7b00258
Frolova, L. A.; Anokhin, D. V.; Piryazev, A. A.; Luchkin, S. Y.; Dremova, N. N.; Stevenson, K. J.; Troshin, P. A. J. Phys. Chem. Lett. 2017, 8, 67.
doi: 10.1021/acs.jpclett.6b02594
Chen, C.; Lin, H.; Chiang, K.; Tsai, W.; Huang, Y.; Tsao, C.; Lin, H. Adv. Mater. 2017, 29, 1605290.
doi: 10.1002/adma.201605290
Nam, J. K.; Jung, M. S.; Chai, S. U.; Choi, Y. J.; Kim, D.; Park, J. H. J. Phys. Chem. Lett. 2017, 8, 2936.
doi: 10.1021/acs.jpclett.7b01067
Nam, J. K.; Chai, S. U.; Cha, W.; Choi, Y. J.; Kim, W.; Jung, M. S.; Kwon, J.; Kim, D.; Park, J. H. Nano Lett. 2017, 17, 2028.
doi: 10.1021/acs.nanolett.7b00050
Wang, Y.; Liu, X.; Zhang, T.; Wang, X.; Kan, M.; Shi, J.; Zhao, Y. Angew. Chem., Int. Ed. 2018, 58, 16691.
Liu, C.; Li, W.; Chen, J.; Fan, J.; Mai, Y.; Schropp, R. E. Nano Energy 2017, 41, 75.
doi: 10.1016/j.nanoen.2017.08.048
Jiang, J. X.; Wang, Q.; Jin, Z. W.; Zhang, X. S.; Lei, J.; Bin, H. J.; Zhang, Z.; Li, Y.; Liu, S. Adv. Energy Mater. 2018, 8, 1701757.
doi: 10.1002/aenm.201701757
Giustino, F.; Snaith, H. J. ACS Energy Lett. 2016, 1, 1233.
doi: 10.1021/acsenergylett.6b00499
Li, Z.; Yang, M. J.; Park, J. S.; Wei, S. H.; Berry, J. J.; Zhu, K. Chem. Mater. 2016, 28, 284.
doi: 10.1021/acs.chemmater.5b04107
Marchioro, A.; Teuscher, J.; Friedrich, D.; Kunst, M.; Krol, R.; Moehl, T.; Gratzel, M.; Moser, J. E. Nat. Photonics 2014, 8, 250.
doi: 10.1038/nphoton.2013.374
Yang, W.; Noh, J.; Jeon, J.; Kim, Y.; Ryu, S.; Seo, J.; Seok, S. Science 2015, 348, 1234.
doi: 10.1126/science.aaa9272
Wang, P. Y.; Zhang, X. W.; Zhou, Y. Q.; Jiang, Q.; Ye, Q. F.; Chu, Z.; Li, X. X.; Yang, X. L.; Yin, Z. G.; You, J. B. Nat. Commun. 2018, 9, 2225.
doi: 10.1038/s41467-018-04636-4
Yin, G.; Zhao, H.; Jiang, H.; Yuan, S. H.; Niu, T. Q.; Zhao, K.; Liu, Z.; Liu, S. Adv. Funct. Mater. 2018, 1803269.
Chen, W.; Chen, H.; Xu, G.; Xue, R.; Wang, S.; Li, Y.; Li, Y. Joule 2018, 10, 011.
Wang, Z.; Liu, X.; Lin, Y.; Liao, Y.; Wei, Q.; Chen, H.; Qiu, J.; Chen, Y.; Zheng, Y. J. Mater. Chem. A 2019, 7, 2773.
doi: 10.1039/C8TA09855G
Duan, J.; Zhao, Y.; He, B.; Tang, Q. Angew. Chem., Int. Ed. 2018, 57, 3787.
doi: 10.1002/anie.201800019
Yu, B.; Zhang, H.; Wu, J.; Li, Y.; Meng, Q. J. Mater. Chem. A 2018, 6, 19810.
doi: 10.1039/C8TA07968D
Cho, F. J.; Deng, X. F.; Ma, Q. S.; Zheng, J. H.; Jae, S. Y. ACS Energy Lett. 2016, 1, 573.
doi: 10.1021/acsenergylett.6b00341
Ma, Q. S.; Huang, S. J.; Wen, X. M.; Martin, A. G.; Anita, W. Y. Adv. Energy Mater. 2016, 6, 1502202.
doi: 10.1002/aenm.201502202
Lei, J.; Gao, F.; Wang, H. X.; Li, J.; Jiang, J.; Wu, X.; Gao, R.; Yang, Z.; Liu, S. Sol. Energy Mater. Sol. Cells 2018, 187, 1.
doi: 10.1016/j.solmat.2018.07.009
Jae, K. N.; Sung, U. K.; Cha, W.; Choi, Y. J.; Kim, W. J. Nano Lett. 2017, 17, 2028.
doi: 10.1021/acs.nanolett.7b00050
Guo, Y.; Zhao, F.; Tao, J.; Jiang, J.; Zhang, J.; Yang, J.; Hu, Z.; Chu, J. ChemSusChem 2018, 2, 690.
Liang, J.; Zhao, P. Y.; Wang, C. X.; Wang, Y. R.; Hu, Y.; Zhu, G. Y.; Ma, L. B.; Liu, J.; Jin, Z. J. Am. Chem. Soc. 2017, 139, 14009.
doi: 10.1021/jacs.7b07949
Yang, F.; Daisuke, H.; Gaurav, K.; Muhammad, A. K.; Chi, H. N.; Zhang, Y. H.; Shen, Q.; Hayase, S. Z. Angew. Chem., Int. Ed. 2018, 57, 12745.
doi: 10.1002/anie.201807270
Duan, J.; Zhao, Y.; Yang, X.; Wang, Y.; He, B.; Tang, Q. Adv. Energy Mater. 2018, 8, 1802346.
doi: 10.1002/aenm.201802346
Xiang, W. C.; Wang, Z. W.; Kubicki, D. J.; Tress, W. G.; Luo, J. S.; Daniel, P.; Seckin, A. Joule 2019, 3, 205.
doi: 10.1016/j.joule.2018.10.008
Cho, F. J. L.; Deng, X. F.; Zheng, J. H.; Kim, J.; Zhang, Z. L.; Zhang, M. J. Mater. Chem. A 2018, 6, 5580.
doi: 10.1039/C7TA11154A
Fai, C.; Lau, J.; Zhang, M.; Deng, X. F.; Zheng, J.; Bing, J. M.; Ma, Q. S.; Kim, J.; Hu, L.; Huang, S. ACS Energy Lett. 2017, 2, 2391.
Li, Y.; Huang, Y.; Wei, J.; Liu, F.; Shao, Z.; Hu, L.; Chen, S.; Yang, S.; Tang, J.; Yao, J.; Dai, S. Nanoscale 2015, 7, 9902.
doi: 10.1039/C5NR00420A
Guo, X. Y.; Gao, J.; Zhang, Z.; Xiao, S.; Pan, D. Q.; Zhou, C. H.; Shen, J. Q.; Hong, J. B.; Yang, Y. Mater. Today Energy 2017, 5, 320.
doi: 10.1016/j.mtener.2017.07.013
Zhang, Z.; Yang, Y.; Gao, J.; Xiao, S.; Zhou, C. H.; Pan, D. Q.; Liu, G.; Guo, X. Y. Mater. Today Energy 2017, 7, 27.
Yang, Y.; Pan, D. Q.; Zhang, Z.; Chen, T.; Xie, H. Y.; Gao, J.; Guo, X. Y. J. Alloys. Compd. 2018, 766, 925.
doi: 10.1016/j.jallcom.2018.07.022
Yang, Y.; Gao, J.; Zhang, Z.; Xiao, S.; Xie, H. H.; Sun, Z. B.; Wang, J. H.; Zhou, C. H.; Wang, Y. W.; Guo, X. Y.; Chu, P. K.; Yu, X. F. Adv. Mater. 2016, 28, 8937.
doi: 10.1002/adma.201602382
Yuan, H.; Zhao, Y.; Duan, J.; He, B.; Jiao, Z.; Tang, Q. Electrochim. Acta 2018, 279, 84.
doi: 10.1016/j.electacta.2018.05.087
Yan, L.; Xue, Q.; Liu, M.; Zhu, Z.; Tian, J.; Li, Z.; Chen, Z.; Chen, Z.; Yan, H. Adv. Mater. 2018, 1802509.
Kulbak, M.; Gupta, S.; Kedem, N.; Levine, I.; Bendikov, T.; Hodes, G.; Cahen, D. J. Phys. Chem. Lett. 2016, 7, 167.
doi: 10.1021/acs.jpclett.5b02597
Yuan, H.; Zhao, Y.; Duan, J.; Wang, Y..; Ynag, X.; Tang, Q. J. Mater. Chem. A 2018, 6, 24324.
doi: 10.1039/C8TA08900K
Wang, Y.; Zhang, T.; Kan, M.; Zhao, Y. J. Am. Chem. Soc. 2018, 140, 12345.
doi: 10.1021/jacs.8b07927
Shen, E.; Chen, J.; Tian, Y.; Luo, Y.; Shen, Y.; Sun, Q.; Jin, T.; Shi, G.; Li, Y.; Tang, J. Adv. Sci. 2019, 1901952.
Bai, D.; Bian, H.; Jin, Z.; Wang, H.; Meng, L.; Wang, Q.; Liu, S. Nano Energy 2018, 52, 408.
doi: 10.1016/j.nanoen.2018.08.012
Aristidou, N.; Eames, C.; Sanchez-Molina, I.; Bu, X.; Kosco, J.; Islam, M. S.; Haque, S. A. Nat. Commun. 2017, 8, 15218.
doi: 10.1038/ncomms15218
Stoumpos. C. C.; Kanatzidis, M. G. Acc. Chem. Res. 2015, 48, 2791.
doi: 10.1021/acs.accounts.5b00229
Xiao, S.; Li, Z.; Guthrey, H.; Moseley, J.; Yang, Y.; Wozny, S.; Moutinho, H.; To, B.; Berry, J.; Gorman, B.; Yan, Y.; Zhu, K.; Al-Jassim, M. J. Phys. Chem. C 2015, 119, 26904.
doi: 10.1021/acs.jpcc.5b09698
Duan, J.; Xu, H.; Sha, W.; Zhao, Y.; Wang, Y.; Yang, X.; Tang, Q. J. Mater. Chem. A 2019, 7, 21036.
doi: 10.1039/C9TA06674H
Travis, W.; Glover, E. N. K.; Bronstein, H.; Scanlon, D. O.; Palgrave, R. G. Chem. Sci. 2016, 7, 4548.
doi: 10.1039/C5SC04845A
Ahmad, W.; Khan, J.; Niu, G. D.; Tang, J. Sol. RRL. 2017, 1, 1700048.
doi: 10.1002/solr.201700048
Eperon, G. E.; Paterno, G. M.; Sutton, R. J.; Zampetti, A.; Haghighirad, A. A.; Cacialli, F.; Snaith, H. J. J. Mater. Chem. A 2015, 3, 19688.
doi: 10.1039/C5TA06398A
Swarnkar, A.; Marshall, A. R.; Sanehira, E. M.; Chernomordik, B. D.; Moore, D. T.; Christians, J. A.; Chakrabarti, T.; Luther, J. M. Science 2016, 354, 92.
doi: 10.1126/science.aag2700
Sanehira, E. M.; Marshall, A. R.; Christians, J. A.; Harvey, S. P.; Ciesielski, P. N.; Wheeler, L. M.; Schulz, P.; Lin, L. Y.; Beard, M. C.; Luther, J. M. Sci. Adv. 2017, 3, eaao4204.
doi: 10.1126/sciadv.aao4204
Wang, Q.; Jin, Z.; Chen, D.; Bai, D.; Bian, H.; Sun, J.; Zhu, G.; Wang, G.; Liu, S. Adv. Energy Mater. 2018, 1800007.
Smith, L. C.; Hoke, D.; Solis-Ibarra, D.; McGehee, M.; Karunadasa, H. Angew. Chem., Int. Ed. 2014, 53, 11232.
doi: 10.1002/anie.201406466
Luo, P.; Xia, W.; Zhou, S. W.; Sun, L.; Cheng, J.; Xu, C.; Lu, Y. J. Phys. Chem. Lett. 2016, 7, 3603.
doi: 10.1021/acs.jpclett.6b01576
Wang, Y.; Dar, M. I.; Ono, L.; Zhang, T.; Kan, M.; Li, Y.; Zhang, L.; Wang, X.; Yang, Y.; Gao, X.; Qi, Y.; Grätzel, M.; Zhao, Y. Science 2019, 365, 591.
doi: 10.1126/science.aav8680
Fu, Y.; Rea, M. T.; Chen, J.; Morrow, D. J.; Hautzinger, M. P.; Zhao, Y.; Pan, D.; Manger, L. H.; Wright, J. C.; Goldsmith, R. H.; Jin, S. Chem. Mater. 2017, 29, 8385.
doi: 10.1021/acs.chemmater.7b02948
Wang, Q.; Zheng, X.; Deng, Y.; Zhao, J.; Chen, Z.; Huang, J. Joule 2017, 1, 1.
doi: 10.1016/j.joule.2017.08.015
Wang, K.; Jin, Z.; Liang, L.; Bian, H.; Bai, D.; Wang, H.; Zhang, J.; Wang, Q.; Liu, S. Nat. Commun. 2018, 9, 4544.
doi: 10.1038/s41467-018-06915-6
Xiang, S.; Li, W.; Wei, Y.; Liu, J.; Liu, H.; Zhu, L.; Chen, H. Nanoscale 2018, 10, 9996.
doi: 10.1039/C7NR09657G
Hu, Y.; Bai, F.; Liu, X.; Ji, Q.; Miao, X.; Qiu, T.; Zhang, S. ACS Energy Lett. 2017, 2, 2219.
doi: 10.1021/acsenergylett.7b00508
J ena, A. K.; Kulkarni, A.; Sanehira, Y.; Ikegami, M.; Miyasaka, T. Chem. Mater. 2018, 30, 6668.
doi: 10.1021/acs.chemmater.8b01808
Nam, J. K.; Jung, M. S.; Chai, S. U.; Choi, Y. J.; Kim, D.; Park, J. H. J. Phys. Chem. Lett. 2017, 8, 2936.
doi: 10.1021/acs.jpclett.7b01067
Fu, L.; Zhang, Y.; Li, B.; Zhou, S.; Zhang, L.; Yin, L. J. Mater. Chem. A 2018, 6, 13263.
doi: 10.1039/C8TA02899K
Bai, D.; Zhang, J.; Jin, Z.; Bian, H.; Wang, K.; Wang, H.; Liang, L.; Wang, Q.; Liu, S. ACS Energy Lett. 2018, 3, 970.
doi: 10.1021/acsenergylett.8b00270
Beal, R. E.; Slotcavage, D. J.; Leijtens, T.; Bowring, A. R.; Belisle, R. A.; Nguyen, W. H.; Burkhard, G. F.; Hoke, E. T.; McGehee, M. D. J. Phys. Chem. Lett. 2016, 7, 746.
doi: 10.1021/acs.jpclett.6b00002
Li, W.; Rothmann, M. U.; Liu, A.; Wang, Z. Y.; Zhang, Y. P.; Pascoe, A. R.; Lu, J. F.; Jiang, L. C.; Chen, Y.; Huang, F. Z.; Peng, Y.; Bao, Q. L.; Etheridge, J.; Bach, U.; Cheng, Y. B. Adv. Energy Mater. 2017, 7, 1700946.
doi: 10.1002/aenm.201700946
Zeng, Z.; Zhang, J.; Gan, X.; Sun, H.; Shang, M.; Hou, D.; Lu, C.; Chen, R.; Zhu, Y.; Han, L. Adv. Energy Mater. 2018, 8, 1801050.
doi: 10.1002/aenm.201801050
Zeng, Q.; Zhang, X.; Feng, X.; Lu, S.; Chen, Z.; Yong, X.; Redfern, S. A. T.; Wei, H.; Wang, H.; Shen, H.; Zhang, W.; Zheng, W.; Zhang, H.; Tse, J. S.; Yang, B. Adv. Mater. 2018, 30, 1705393.
doi: 10.1002/adma.201705393
Ma, Q. S.; Huang, S. J.; Wen, X. M.; Green, M. A.; Ho-Bailie, A. W. Y. Adv. Energy. Mater. 2016, 6, 1502202.
doi: 10.1002/aenm.201502202
Zhu, W.; Zhang. Q.; Chen, D.; Zhang, Z.; Lin, Z.; Chang, J.; Zhang, J.; Zhang, C.; Hao, Y. Adv. Energy. Mater. 2018, 8, 1802080.
doi: 10.1002/aenm.201802080
Jiang, Y.; Yuan, J.; Ni, Y.; Yang, J.; Wang, Y.; Jiu, T.; Yuan, M.; Chen, J. Joule 2018, 2, 1356.
doi: 10.1016/j.joule.2018.05.004
MØLler, C. K. Nature 1958, 182, 1436.
Kulbak, M.; Cahen, D.; Hodes, G. J. Phys. Chem. Lett. 2015, 6, 2452.
doi: 10.1021/acs.jpclett.5b00968
Liang, J.; Wang, C.; Wang, Y.; Xu, Z.; Lu, Z.; Zhu, H.; Xiao, C.; Yi, X. J. Am. Chem. Soc. 2016, 138, 15829.
doi: 10.1021/jacs.6b10227
Li, Y.; Wang, Y.; Zhang, T.; Yoriya, S.; Kumnorkaew, P.; Chen, S.; Guo, X.; Zhao, Y. Chem. Commun. 2018, 54, 9089.
Bai, D. L.; Bian, H.; Jin, Z. W.; Wang, H. R.; Meng, L.; Wang, Q.; Liu, S. Z. Nano Energy 2018, 52, 408.
doi: 10.1016/j.nanoen.2018.08.012
Zhang, Q.; Zhu, W.; Chen, D.; Zhang, Z.; Lin, Z.; Chang, J.; Zhang, J.; Zhang, C.; Hao, Y. ACS Appl. Mater. Interfaces 2019, 11, 2997.
doi: 10.1021/acsami.8b17839
Fu, Y. P.; Rea, M. T.; Chen, J.; Morrow, D. J.; Hautzinger, M. P.; Zhao, Y. Z.; Pan, D. X.; Manger, L. H.; Wright, J. C.; Goldsmith, R. H.; Jin, S. Chem. Mater. 2017, 29, 8385.
doi: 10.1021/acs.chemmater.7b02948
Chen, Y. C.; Xiao, Y. Y.; Meng, Q.; Han, C. B.; Yan, H.; Zhang, Y. Z. Nano Energy 2020, 67, 104249.
doi: 10.1016/j.nanoen.2019.104249
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006
Zeyuan WANG , Songzhi ZHENG , Hao LI , Jingbo WENG , Wei WANG , Yang WANG , Weihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021
Yixuan Gao , Lingxing Zan , Wenlin Zhang , Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091
Xinyuan Shi , Chenyangjiang , Changyu Zhai , Xuemei Lu , Jia Li , Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019
Fan JIA , Wenbao XU , Fangbin LIU , Haihua ZHANG , Hongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473
Shitao Fu , Jianming Zhang , Cancan Cao , Zhihui Wang , Chaoran Qin , Jian Zhang , Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059
Xuyang Wang , Jiapei Zhang , Lirui Zhao , Xiaowen Xu , Guizheng Zou , Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065
Xiaoning TANG , Junnan LIU , Xingfu YANG , Jie LEI , Qiuyang LUO , Shu XIA , An XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191
Jiaxi Xu , Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049
Yipeng Zhou , Chenxin Ran , Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096
Jing SU , Bingrong LI , Yiyan BAI , Wenjuan JI , Haiying YANG , Zhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
Bo YANG , Gongxuan LÜ , Jiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346
Wendian XIE , Yuehua LONG , Jianyang XIE , Liqun XING , Shixiong SHE , Yan YANG , Zhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050
Bao Jia , Yunzhe Ke , Shiyue Sun , Dongxue Yu , Ying Liu , Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121
Yan ZHAO , Xiaokang JIANG , Zhonghui LI , Jiaxu WANG , Hengwei ZHOU , Hai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242
Jiaxin Su , Jiaqi Zhang , Shuming Chai , Yankun Wang , Sibo Wang , Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012
Zhaomei LIU , Wenshi ZHONG , Jiaxin LI , Gengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404
Cheng PENG , Jianwei WEI , Yating CHEN , Nan HU , Hui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282
Xinxin JING , Weiduo WANG , Hesu MO , Peng TAN , Zhigang CHEN , Zhengying WU , Linbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371