Citation: Ren Bao-Yi, Yi Jian-Cheng, Zhong Dao-Kun, Zhao Yu-Zhi, Guo Run-Da, Sheng Yong-Gang, Sun Ya-Guang, Xie Ling-Hai, Huang Wei. Conjugated Regulation of Phosphorescent Iridium (Ⅲ) Complex Constructed from Spiro Ligand and Its Electroluminescent Performances[J]. Acta Chimica Sinica, ;2020, 78(1): 56-62. doi: 10.6023/A19110406 shu

Conjugated Regulation of Phosphorescent Iridium (Ⅲ) Complex Constructed from Spiro Ligand and Its Electroluminescent Performances

  • Corresponding author: Guo Run-Da, runda_guo@hust.edu.cn Sun Ya-Guang, sunyaguang@syuct.edu.cn
  • Received Date: 15 November 2019
    Available Online: 19 January 2019

    Fund Project: the Supporting Project for Innovative Talents of Higher Education Institutions in Liaoning Province LR2018018Project supported by the Supporting Project for Innovative Talents of Higher Education Institutions in Liaoning Province (LR2018018), the Natural Science Foundation of Liaoning Province (No. 20180550539), the Science and Technology project of Shenyang (No. 18-013-0-26), and the Open Research Fund of Key Laboratory for Organic Electronics and Information Displaysthe Natural Science Foundation of Liaoning Province 20180550539the Science and Technology project of Shenyang 18-013-0-26

Figures(7)

  • It is an important pathway in the field of phosphorescent organic light-emitting diodes (PhOLED) that endowing iridium (Ⅲ) emitters with the features of low-cost, decent photoelectric properties, and high doping-concentration application by harmonizing electronic and steric effects of corresponding ligands. Based on our previous research that introducing spiro ligand into Ir complexes to protect emitting-center and to suppress concentration quenching, herein, for pushing the emission to orange region, we extend the conjugated structure of spiro[fluorene-9, 9'-xanthene] (SFX) by connected benzo[d]-thiazole-2-yl on the fluorene moiety of SFX via Suzuki-Miyaura coupling, acting as a new spiro ligand. A homoleptic Ir complex, fac-Ir(SFXbtz)3, was synthesized successfully, and the structure and the photophysical and electrochemical properties were studied by nuclear magnetic resonance, single crystal X-ray diffraction, absorption and emission measurements, as well as cyclic voltammetry. The crystallographic data revealed an enlarged Ir…Ir distance and weakly intermolecular π-π interactions between the spiro ligands. The emission spectrum of fac-Ir(SFXbtz)3 showed a maximum peak at 587 nm and a shoulder peak at 635 nm with a photoluminescence (PL) quantum yield (QY) of 64.7% (relative to tris[2-phenylpyridinato-C2, N]iridium(Ⅲ), PLQY=40%). The highest occupied molecular orbital level was determined to be -5.28 eV according to the onset oxidation potential (0.48 V). In view of the orange light-emitting and the high PLQY of fac-Ir(SFXbtz)3, the monochromatic and two-element white PhOLED were fabricated to investigate its electroluminescence (EL) performance in high doping concentrations, ω=12% for monochromatic device and ω=15% for two-element white device, respectively. The EL spectrum of the monochromatic PhOLED (device D1) using common 4, 4'-bis(N-carbazolyl)-1, 1'-biphenyl as host exhibits two emission peaks, a maximum emission peak at 581 nm and shoulder emission peak at 631 nm, corresponding to its PL spectrum. The device D1 shows a peak performance of 10.8 cd·A-1 and 8.4 lm·W-1, maximum brightness of 7217 cd·m-2, respectively. The two-element white PhOLED selecting bis[2-(4, 6-difluorophenyl)pyridinato-C2, N](picolinato)iridium(Ⅲ) as complementary blue-light component, possesses a peak performance of 11.6 cd·A-1 and 8.0 lm·W-1, maximum brightness of 8763 cd·m-2, and stabilized CIE 1931 (0.34~0.37, 0.36~0.38) under operated voltages of 3~9 V, respectively. These results indicate that the fac-Ir(SFXbtz)3 is a potential phosphor for efficient orange PhOLED, possessing the advantages of low-cost, suitable doping in high concentration, and stabilized color coordinates.
  • 加载中
    1. [1]

      Chi, Y.; Chou, P.-T. Chem. Soc. Rev. 2010, 39, 638.  doi: 10.1039/B916237B

    2. [2]

      Xu, H.; Chen, R.; Sun, Q.; Lai, W.; Su, Q.; Huang, W.; Liu, X. Chem. Soc. Rev. 2014, 43, 3259.  doi: 10.1039/C3CS60449G

    3. [3]

      Liao, Z.; Zhou, T.; Mi, B.; Gao, Z; Fan, Q.; Huang, W. Prog. Chem. 2011, 23, 1627.
       

    4. [4]

      Mroz, R.; Vezzu, D. A.; Wallace, B.; Ravindranathan, D.; Carroll, J.; Pike, R. D.; Huo, S. Chinese J. Org. Chem. 2018, 38, 171.  doi: 10.6023/cjoc201709010

    5. [5]

      Baldo, M. A.; Thompson, M. E.; Forrest, S. R. Nature 2000, 403, 750.  doi: 10.1038/35001541

    6. [6]

      Mi, B. X.; Wang, P. F.; Gao, Z. Q.; Lee, C. S.; Lee, S. T.; Hong, H. L.; Chen, X. M.; Wong, M. S.; Xia, P. F.; Cheah, K. W.; Chen, C. H.; Huang, W. Adv. Mater. 2009, 21, 339.  doi: 10.1002/adma.200801604

    7. [7]

      Lamansky, S.; Djurovich, P.; Murphy, D.; Abdel-Razzaq, F.; Lee, H.-E.; Adachi, C.; Burrows, P. E.; Forrest, S. R.; Thompson, M. E. J. Am. Chem. Soc. 2001, 123, 4304.  doi: 10.1021/ja003693s

    8. [8]

      Tsuboyama, A.; Iwawaki, H.; Furugori, M.; Mukaide, T.; Kamatani, J.; Igawa, S.; Moriyama, T.; Miura, S.; Takiguchi, T.; Okada, S.; Hoshino, M.; Ueno, K. J. Am. Chem. Soc. 2003, 125, 12971.  doi: 10.1021/ja034732d

    9. [9]

      Kwon, Y.; Han, S. H.; Yu, S.; Lee, J. Y.; Lee, K. M. J. Mater. Chem. C 2018, 6, 4565.  doi: 10.1039/C8TC00568K

    10. [10]

      Su, S. J.; Chiba, T.; Takeda, T.; Kido, J. Adv. Mater. 2008, 20, 2125.  doi: 10.1002/adma.200701730

    11. [11]

      Li, J.; Wang, R.; Yang, R.; Zhou, W.; Wang, X. J. Mater. Chem. C 2013, 1, 4171.  doi: 10.1039/c3tc30586d

    12. [12]

      Liu, D.; Ren, H.; Deng, L.; Zhang, T. ACS Appl. Mater. Inter. 2013, 5, 4937.  doi: 10.1021/am400672y

    13. [13]

      Su, Y.-J.; Huang, H.-L.; Li, C.-L.; Chien, C.-H.; Tao, Y.-T.; Chou, P.-T.; Datta, S.; Liu, R.-S. Adv. Mater. 2003, 15, 884.  doi: 10.1002/adma.200304630

    14. [14]

      Fan, C.; Yang, C. Chem. Soc. Rev. 2014, 43, 6439.  doi: 10.1039/C4CS00110A

    15. [15]

      Cui, L.-S.; Liu, Y.; Liu, X.-Y.; Jiang, Z. Q.; Liao, L. S. ACS Appl. Mater. Inter. 2015, 7, 11007.  doi: 10.1021/acsami.5b02541

    16. [16]

      Xie, H. Z.; Liu, M. W.; Wang, O. Y.; Zhang, X. H.; Lee, C. S.; Hung, L. S.; Lee, S. T.; Teng, P. F.; Kwong, H. L.; Zheng, H.; Che, C. M. Adv. Mater. 2001, 13, 1245.  doi: 10.1002/1521-4095(200108)13:16<1245::AID-ADMA1245>3.0.CO;2-J

    17. [17]

      Tong, B.; Wang, H.; Chen, M.; Zhou, S.; Hu, Y.; Zhang, Q.; He, G.; Fu, L.; Shi, H.; Jin, L.; Zhou, H. Dalton Trans. 2018, 47, 12243.  doi: 10.1039/C8DT02781A

    18. [18]

      Xia, D.; Wang, B.; Chen, B.; Wang, S.; Zhang, B.; Ding, J.; Wang, L.; Jing, X.; Wang, F. Angew. Chem., Int. Ed. 2014, 53, 1048.  doi: 10.1002/anie.201307311

    19. [19]

      Xie, L.-H.; Zhu, R.; Qian, Y.; Liu, R.-R.; Chen, S.-F.; Lin, J.; Huang, W. J. Phys. Chem. Lett. 2009, 1, 272.

    20. [20]

      Xie, L.-H.; Liu, F.; Tang, C.; Hou, X.-Y.; Hua, Y.-R.; Fan, Q.-L.; Huang, W. Org. Lett. 2006, 8, 2787.  doi: 10.1021/ol060871z

    21. [21]

      Gu, J.-F.; Xie, G.-H.; Zhang, L.; Chen, S.-F.; Lin, Z.-Q.; Zhang, Z.-S.; Zhao, J.-F.; Xie, L.-H.; Tang, C.; Zhao, Y.; Liu, S.-Y.; Huang, W. J. Phys. Chem. Lett. 2010, 1, 2849.  doi: 10.1021/jz101039d

    22. [22]

      Zhao, X.-H.; Xie, G.-H.; Liu, Z.-D.; Li, W.-J.; Yi, M.-D.; Xie, L.-H.; Hu, C.-P.; Zhu, R.; Zhao, Q.; Zhao, Y.; Zhao, J.-F.; Qian, Y.; Huang, W. Chem. Commun. 2012, 48, 3854.  doi: 10.1039/c2cc30595j

    23. [23]

      Li, J.; Ding, D.; Tao, Y.; Wei, Y.; Chen, R.; Xie, L.; Huang, W.; Xu, H. Adv. Mater. 2016, 28, 3122.  doi: 10.1002/adma.201506286

    24. [24]

      Ren, B.-Y.; Zhong, D.-K.; Sun, Y.-G.; Zhao, X.-H.; Zhang, Q.-J.; Liu, Y.; Jurow, M.; Sun, M.-L.; Zhang, Z.-S.; Zhao, Y. Org. Electronics 2016, 36, 140.  doi: 10.1016/j.orgel.2016.06.006

    25. [25]

      Xu, B.; Zhang, J.; Hua, Y.; Liu, P.; Wang, L.; RUan, C.; Li, Y.; Boschloo, G.; Johansson, E. M. J.; Kloo, L.; Hagfeldt, A.; Jen, A. K.-Y.; Sun, L. Chem 2017, 2, 676.  doi: 10.1016/j.chempr.2017.03.011

    26. [26]

      Cheng, M.; Li, Y.; Liu, P.; Zhang, F.; Hajian, A.; Wang, H.; Li, J.; Wang, L.; Kloo, L.; Yang, X.; Sun, L. Solar RRL 2017, 1, 1700046.  doi: 10.1002/solr.201700046

    27. [27]

      Ren, B.-Y.; Guo, R.-D.; Zhong, D.-K.; Ou, C.-J.; Xiong, G.; Zhao, X.-H.; Sun, Y.-G.; Jurow, M.; Kang, J.; Zhao, Y.; Li, S.-B.; You, L.-X.; Wang, L.-W.; Liu, Y.; Huang, W. Inorg. Chem. 2017, 56, 8397.  doi: 10.1021/acs.inorgchem.7b01034

    28. [28]

      Xue, J.; Xin, L.; Hou, J.; Duan, L.; Wang, R.; Wei, Y.; Qiao, J. Chem. Mater. 2017, 29, 4775.  doi: 10.1021/acs.chemmater.7b00518

    29. [29]

      Breu, J.; Stössel, P.; Schrader, S.; Starukhin, A.; Finkenzeller, W. J.; Yersin, H. Chem. Mater. 2005, 17, 1745.  doi: 10.1021/cm0486767

    30. [30]

      Chen, S.; Dai, J.; Zhou, K.; Luo, Y.; Su, S.; Pu, X.; Huang, Y.; Lu, Z. Acta Chim. Sinica 2017, 75, 367.
       

    31. [31]

      Caspar, J. V.; Meyer, T. J. J. Phys. Chem. 1983, 87, 952.  doi: 10.1021/j100229a010

    32. [32]

      Jayabharathi, J.; Thanikachalam, V.; Saravanan, K. J. Photoch. Photobio. A 2009, 208, 13.  doi: 10.1016/j.jphotochem.2009.07.027

    33. [33]

      Jiang, B.; Ning, X.; Gong, S.; Jiang, N.; Zhong, C.; Lu, Z. H.; Yang, C. J. Mater. Chem. C 2017, 5, 10220.  doi: 10.1039/C7TC03667A

    34. [34]

      Liang, A.; Huang, G.; Dong, S.; Zheng, X.; Zhu, J.; Wang, Z.; Wu, W.; Zhang, J.; Huang, F. J. Mater. Chem. C 2016, 4, 6626.  doi: 10.1039/C6TC01922F

    35. [35]

      Liang, A.; Luo, M.; Liu, Y.; Wang, H.; Wang, Z.; Zheng, X.; Cao, T.; Liu, D.; Zhang, Y.; Huang, F. Dyes Pigments 2018, 159, 637.  doi: 10.1016/j.dyepig.2018.07.019

    36. [36]

      Yang, X.; Feng, Z.; Dang, J.; Sun, Y.; Zhou, G.; Wong, W. Y. Mater. Chem. Front. 2019, 3, 376.  doi: 10.1039/C8QM00548F

  • 加载中
    1. [1]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    2. [2]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    3. [3]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    4. [4]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    5. [5]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    6. [6]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    7. [7]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    8. [8]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    9. [9]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    10. [10]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    11. [11]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    12. [12]

      Xinqiong LiGuocheng RaoXi PengChan YangYanjing ZhangYan TianXianghui FuJia Geng . Direct detection of C9orf72 hexanucleotide repeat expansions by nanopore biosensor. Chinese Chemical Letters, 2024, 35(5): 109419-. doi: 10.1016/j.cclet.2023.109419

    13. [13]

      Yan LiuYang WangJiayi ZhuXuxian SuXudong LinLiang XuXiwen Xing . Employing pH-responsive RNA triplex to control CRISPR/Cas9-mediated gene manipulation in mammalian cells. Chinese Chemical Letters, 2024, 35(9): 109427-. doi: 10.1016/j.cclet.2023.109427

    14. [14]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    15. [15]

      Guo-Ping YinYa-Juan LiLi ZhangLing-Gao ZengXue-Mei LiuChang-Hua Hu . Citrinsorbicillin A, a novel homotrimeric sorbicillinoid isolated by LC-MS-guided with cytotoxic activity from the fungus Trichoderma citrinoviride HT-9. Chinese Chemical Letters, 2024, 35(8): 109035-. doi: 10.1016/j.cclet.2023.109035

    16. [16]

      Jiajun WangGuolin YiShengling GuoJianing WangShujuan LiKe XuWeiyi WangShulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050

    17. [17]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    18. [18]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    19. [19]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    20. [20]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

Metrics
  • PDF Downloads(9)
  • Abstract views(1006)
  • HTML views(226)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return