Citation: Liu Qiyan, Cai Daihong, Qi Yongyu, Le Xueyi. DNA Interaction and Antitumor Activity of A Copper(Ⅱ) Complex Containing Sparfloxacin and Triazine Derivatives[J]. Acta Chimica Sinica, ;2020, 78(3): 263-270. doi: 10.6023/A19110403 shu

DNA Interaction and Antitumor Activity of A Copper(Ⅱ) Complex Containing Sparfloxacin and Triazine Derivatives

  • Corresponding author: Le Xueyi, lexyfu@163.com
  • Received Date: 13 November 2019
    Available Online: 21 February 2020

    Fund Project: Project supported by the Natural Science Foundation of Guangdong Province (No. 2015A030313423)the Natural Science Foundation of Guangdong Province 2015A030313423

Figures(13)

  • DNA is an important target for antitumor drugs, hence investigation of the interaction between drug molecules and DNA can help to design targeted DNA antitumor drugs. New ternary copper(Ⅱ) complex[Cu(Sf)(PyTA)(H2O)]·ClO4· 3.5H2O[Sf=sparfloxacin, 5-amino-1-cyclopropyl-7-(cis-3, 5-dimethyl-1-piperazinyl)-6, 8-difluoro-1, 4-dihydro-4-oxoquino-line-3-carboxylic acid, PyTA=2, 4-diamino-6-(2'-pyridyl)-1, 3, 5-triazine] was synthesized and characterized by elemental analyses, molar conductivity measurement and various spectroscopic techniques such as infrared, ultraviolet-visible, and electrospray ionization mass spectra. The interaction of the complex with DNA was investigated using electronic absorption spectroscopy, KI fluorescence quench, viscosity measurement and molecular docking techniques. It was found that the complex could bind to DNA through an intercalation mode being related with the quinoline ring of ligand Sf, and the corresponding binding constant Kb is 1.23×104 L/mol. Moreover, the antitumor activity of the complex was evaluated using the MTT[3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide] method, revealing that the complex displayed favorable cytotoxic effects[IC50=(57.0±1.6)~(77.6±1.4) μmol/L] toward cancer cells (A549, Bel-7402 and Eca-109) and less toxic towards normal cells (3T3). Most importantly, the cytotoxic mechanism of the complex towards Eca-109 cells was explored by single cell gel electrophoresis assay, Hoechst 33342 staining, Annexin V-FITC/PI double dye flow cytometry, measurement of mitochondrial membrane potential change, detection of intracellular cytochrome C and Ca2+ levels, and test of cell cycle arrest. Single cell gel electrophoresis assay (comet assays) demonstrated that the complex could damage DNA and cause apoptosis. Double staining analysis showed that the complex could induce apoptosis in Eca-109 cells. Cell cycle arrest studies revealed the cell growth arrest at S and G2/M phases. The complex also could induce a reduction in the mitochondrial membrane potential and release of the cytochrome C, and increase the intracellular Ca2+ level. The results demonstrated that the complex could induce apoptosis in Eca-109 cells through DNA-binding mitochondrial dysfunctional pathways, which was accompanied by the cell growth arrest at S and G2/M phases and damage of DNA.
  • 加载中
    1. [1]

      Rehman, S. U.; Sarwar, T.; Mohammed, A. H.; Hassan, M. I.; Mohammad, T. Arch. Biochem. Biophys. 2015, 576, 49.  doi: 10.1016/j.abb.2015.03.024

    2. [2]

      Santini, C.; Pellei, M.; Gandin, V.; Porchia, M.; Tisato, F.; Marzano, C. Chem. Rev. 2014, 114, 815.  doi: 10.1021/cr400135x

    3. [3]

      Tardito, S.; Bassanetti, I.; Bignardi, C.; Elviri, L.; Tegoni, M.; Mucchino, C.; Bussolati, O.; Franchi-Gazzola, R.; Marchiò, L. J. Am. Chem. Soc. 2011, 133, 6235.  doi: 10.1021/ja109413c

    4. [4]

      Qi, Y. Y.; Gan, Q.; Liu, Y. X.; Xiong, Y. H.; Mao, Z. W.; Le, X. Y. Eur. J. Med. Chem. 2018, 154, 220.  doi: 10.1016/j.ejmech.2018.05.023

    5. [5]

      Shi, X. C.; Fang, H. B.; Guo, Y.; Yuan, H.; Guo, Z. J.; Wang, X. Y. J. Inorg. Biochem. 2019, 190, 38.  doi: 10.1016/j.jinorgbio.2018.10.003

    6. [6]

      Turel, I. Coord. Chem. Rev. 2002, 232, 27.  doi: 10.1016/S0010-8545(02)00027-9

    7. [7]

      Dorotíková, S.; Kožíšková, J.; Malček, M.; Jomová, K.; Herich, P.; Plevová, K.; Briestenská, K.; Chalupková, A.; Mistríková, J.; Milata, V.; Dvoranová, D.; Bučinský, L. J. Inorg. Biochem. 2015, 150, 160.  doi: 10.1016/j.jinorgbio.2015.06.017

    8. [8]

      Akhtar, J.; Khan, A. A.; Ali, Z.; Haider, R.; Yar, M. S. Eur. J. Med. Chem. 2017, 125, 143.  doi: 10.1016/j.ejmech.2016.09.023

    9. [9]

      Xiao, Y.; Wang, Q.; Huang, Y. M.; Ma, X. L.; Xiong, X. N.; Li, H. Dalton Trans. 2016, 45, 10928.  doi: 10.1039/C6DT00915H

    10. [10]

      Geary, W. J. Coord. Chem. Rev. 1971, 7, 81.  doi: 10.1016/S0010-8545(00)80009-0

    11. [11]

      Efthimiadou, E. K.; Katsarou, M. E.; Karaliota, A.; Psomas, G. J. Inorg. Biochem. 2008, 102, 910.  doi: 10.1016/j.jinorgbio.2007.12.011

    12. [12]

      Guo, Q.; Li, L. Z.; Dong, J. F.; Liu, H. Y.; Xue, Z. C.; Xu, T. Acta Chim. Sinica 2012, 70, 1617.
       

    13. [13]

      Fu, X. B.; Liu, D. D.; Lin, Y.; Hu, W.; Mao, Z. W.; Le, X. Y. Dalton Trans. 2014, 43, 8721.  doi: 10.1039/c3dt53577k

    14. [14]

      Fu, X. B.; Zhang, J. J.; Liu, D. D.; Gan, Q.; Gao, H. W.; Mao, Z. W.; Le, X. Y. J. Inorg. Biochem. 2015, 143, 77.  doi: 10.1016/j.jinorgbio.2014.12.006

    15. [15]

      Trott, O.; Olson, A. J. J. Comput. Chem. 2010, 31, 455.

    16. [16]

      Chen, J. J.; Ye, H. N.; Zhang, M. J.; Li, J. Y.; Liu, J. Y.; Xue, J. P. Chin. J. Chem. 2016, 34, 983.  doi: 10.1002/cjoc.201600481

    17. [17]

      Feng, C. G.; Gan, Q.; Liu, X.; He, H. Y. Chin. J. Chem. 2012, 30, 1589.  doi: 10.1002/cjoc.201100744

    18. [18]

      Hong, X. L.; Zhou, Y. H.; Zeng, C. C.; Wu, X. C.; Liu, Y. J. J. Organomet. Chem. 2017, 846, 312.  doi: 10.1016/j.jorganchem.2017.07.004

    19. [19]

      Weng, H.; Tan, Z. J.; Hu, Y. P.; Shu, Y. J.; Bao, R. F.; Jiang, L.; Wu, X. S.; Li, M. L.; Ding, Q.; Wang, X. A.; Xiang, S. S.; Li, H. F.; Cao, Y.; Tao, F.; Liu, Y. B. Cancer Cell Int. 2014, 14, 96.  doi: 10.1186/s12935-014-0096-6

    20. [20]

      Huang, H. Y.; Zhang, P. Y.; Yu, B. L.; Chen, Y.; Wang, J. Q.; Ji, L. N.; Chao, H. J. Med. Chem. 2014, 57, 8971.  doi: 10.1021/jm501095r

    21. [21]

      Tang, B.; Wan, D.; Lai, S. H.; Yang, H. H.; Zhang, C.; Wang, X. Z.; Zeng, C. C.; Liu, Y. J. J. Inorg. Biochem. 2017, 173, 93.  doi: 10.1016/j.jinorgbio.2017.04.028

    22. [22]

      Wan. D.; Tang, B.; Wang, Y. J.; Guo, B. H.; Yin, H.; Yi, Q. Y.; Liu, Y. J. Eur. J. Med. Chem. 2017, 139, 180.  doi: 10.1016/j.ejmech.2017.07.066

    23. [23]

      Min, X.; Heng, H.; Yu, H. L.; Dan, M.; Jie, C.; Zeng, Y.; Ning, H.; Liu, Z. G.; Wang, Z. Y.; Lin, W. Oncology Lett. 2018, 15, 2459.

    24. [24]

      Clapham, D. E. Cell 2007, 131, 1047.  doi: 10.1016/j.cell.2007.11.028

    25. [25]

      Kar, P.; Samanta, K.; Shaikh, S.; Chowdhury, A.; Chakraborti, T.; Chakraborti, S. Arch. Biochem. Biophys. 2010, 495, 1.  doi: 10.1016/j.abb.2009.12.020

    26. [26]

      Zou, H. H.; Wang, L.; Long, Z. X.; Qin, Q. P.; Song, Z. K.; Xie, T.; Zhang, S. H.; Liu, Y. C.; Lin, B.; Chen, Z. F. Eur. J. Med. Chem. 2016, 108, 1.  doi: 10.1016/j.ejmech.2015.11.005

    27. [27]

      Liu, Y.; Chen, X. M.; Zhang, L. Q.; Sun, D. D.; Zhou, Y. H.; Chen, L. M.; Liu, J. Acta Chim. Sinica 2014, 72, 473.
       

    28. [28]

      Zhao, Q. H.; Fan, A. L.; Li, L. N.; Xie, M. J. Acta Crystallogr. Sect. E Struct. Rep. Online 2009, 65, M622.  doi: 10.1107/S1600536809016055

    29. [29]

      Waring, M. J. J. Mol. Biol. 1965, 13, 269.  doi: 10.1016/S0022-2836(65)80096-1

    30. [30]

      Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys. 2010, 132, 154104.  doi: 10.1063/1.3382344

  • 加载中
    1. [1]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    2. [2]

      Xiaofen GUANYating LIUJia LIYiwen HUHaiyuan DINGYuanjing SHIZhiqiang WANGWenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122

    3. [3]

      Yingyue ZHANGLiuqing KANGYating YANGXiaofen GUANWenmin WANG . Crystal structure and antibacterial activity of two Gd2 complexes based on polydentate Schiff-base ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1867-1877. doi: 10.11862/CJIC.20250100

    4. [4]

      Xiaotong LUPan ZHANGZijie ZHAOLei HUANGHongwei ZUOLili LIANG . Antitumor and antibacterial activities of pyridyl Schiff base indium and dysprosium complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1523-1532. doi: 10.11862/CJIC.20250073

    5. [5]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    6. [6]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    7. [7]

      Yuxin CHENYanni LINGYuqing YAOKeyi WANGLinna LIXin ZHANGQin WANGHongdao LIWenmin WANG . Construction, structures, and interaction with DNA of two Sm4 complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1141-1150. doi: 10.11862/CJIC.20240258

    8. [8]

      Hanxue LIUShijie LIMeng RENXuling XUEHongke LIU . Design and antitumor properties of dehydroabietic acid functionalized cyclometalated iridium(Ⅲ) complex. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1483-1494. doi: 10.11862/CJIC.20250031

    9. [9]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    10. [10]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    11. [11]

      Chang LiuTao WuLijiao DengXuzi LiXin FuShuzhen LiaoWenjie MaGuoqiang ZouHai Yang . Programmed DNA walkers for biosensors. Chinese Chemical Letters, 2024, 35(9): 109307-. doi: 10.1016/j.cclet.2023.109307

    12. [12]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    13. [13]

      Leyuan Sun Xiaoyu Xie Fangfang Chen . 敦煌壁画的“DNA变身”. University Chemistry, 2025, 40(8): 211-217. doi: 10.12461/PKU.DXHX202410079

    14. [14]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    15. [15]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    16. [16]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    17. [17]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    18. [18]

      Jiahao Zeng Hui Chao . 诱导程序性细胞死亡的金属抗肿瘤药物研究. University Chemistry, 2025, 40(6): 145-159. doi: 10.12461/PKU.DXHX202406019

    19. [19]

      Jian LiYu ZhangRongrong YanKaiyuan SunXiaoqing LiuZishang LiangYinan JiaoHui BuXin ChenJinjin ZhaoJianlin Shi . Highly Efficient, Targeted, and Traceable Perovskite Nanocrystals for Photoelectrocatalytic Oncotherapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-0. doi: 10.1016/j.actphy.2024.100042

    20. [20]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

Metrics
  • PDF Downloads(12)
  • Abstract views(2336)
  • HTML views(340)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return