Citation: Zhao Yajing, Xie Liang, Ma Lanchao, He Junhui. Preparation and Application of Polydimethylsiloxane Encapsulated Graphene-based Flexible Infrared Detector[J]. Acta Chimica Sinica, ;2020, 78(2): 161-169. doi: 10.6023/A19100378 shu

Preparation and Application of Polydimethylsiloxane Encapsulated Graphene-based Flexible Infrared Detector

  • Corresponding author: He Junhui, jhhe@mail.ipc.ac.cn
  • These authors contributed equally to this work.
  • Received Date: 22 October 2019
    Available Online: 10 February 2020

    Fund Project: the Science and Technology Commission of Beijing Municipality Z151100003315018the National Natural Science Foundation of China 21571182the National Key Research and Development Program of China 2017YFA0207102Project supported by the National Natural Science Foundation of China (No. 21571182), the National Key Research and Development Program of China (No. 2017YFA0207102), the Science and Technology Commission of Beijing Municipality (No. Z151100003315018) and the Beijing "Practical Training Program"

Figures(14)

  • In this paper, we prepared reduced graphene oxide (rGO) films by first drop-casting graphene oxide (GO)/ethanol dispersion on top of silicon nanowires array, followed by thermal reduction in 95% Ar-5% H2 (volume ratio) atmosphere. A series of rGO thin films were prepared by thermal reduction at different annealing temperatures ranging from 100℃ to 1200℃, and characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, four-probe square resistance tester and scanning electron microscopy (SEM). The experimental results indicate that reduction of oxygen-containing groups, dehydrogenation of C-H groups and reconstruction of C=C skeleton occurred significantly on the GO plane. Compared with the insulating GO film, the resistance of rGO thin films decreases greatly, and the sheet resistance of rGO films shows a decreasing trend with increase of reduction temperature. Then, flexible polydimethylsiloxane (PDMS) encapsulated graphene-based devices (P-rGO-P) were fabricated by spin-coating PDMS on the surface of obtained rGO films with evaporated Au interdigital electrodes. The flexible devices maintained the integrity of the rGO films while providing self-supporting characteristics. The rGO film in the device had a clear layered structure, and a certain movable space between the upper and lower PDMS layers. This sandwich structure ensures that when the P-rGO-P flexible detector is bent and squeezed, the rGO film has sufficient buffer space, and would not be subjected to excessive stress arising from adhesion to PDMS. In short, the sandwich structure endows the originally fragile device with excellent flexibility. The P-rGO-P detector was successfully applied to detecting infrared laser irradiation, human body infrared radiation, bending motions and pressure changes. The experimental results showed that the flexible encapsulated P-rGO-P infrared detectors derived from the rGO thin films reduced at varied temperatures all had response to near-infrared (1064 nm) laser irradiation, and the maximum response reached up to 2.78 mA/W. In addition, the P-rGO-P flexible detector also demonstrated fast and sensitive response to human body infrared radiation and bending changes, and could maintain its integrity and responsiveness after repeated bending.
  • 加载中
    1. [1]

      Hong, G.; Diao, S.; Antaris, A. L.; Dai, H. Chem. Rev. 2015, 115, 10816.

    2. [2]

      Ko, H. C.; Stoykovich, M. P.; Song, J.; Malyarchuk, V.; Choi, W. M.; Yu, C.-J.; Geddes Ⅲ, J. B.; Xiao, J.; Wang, S.; Huang, Y.; Rogers, J. A. Nature 2008, 454, 748.

    3. [3]

      Martyniuk, P.; Rogalski, A. Prog. Quantum Electron. 2008, 32, 89.

    4. [4]

      Rauch, T.; Böberl, M.; Tedde, S. F.; Fürst, J.; Kovalenko, M. V.; Hesser, G.; Lemmer, U.; Heiss, W.; Hayden, O. Nat. Photonics 2009, 3, 332.

    5. [5]

      Rogalski, A.; Chrzanowski, K. Metrol. Meas. Syst. 2014, 21, 565.

    6. [6]

      Lv, J. T.; Yang, L. J.; Li, Z. G.; Wei, Y. T.; Zhang, B. J.; Liang, L. Q.; Wang, F. W.; Si, G. Y. Acta Chim. Sinica 2013, 71, 1275.
       

    7. [7]

      Zhou, J. P.; Wu, B. G.; Zhou, Z. K.; Tian, J. W.; Yuan, A. H. Chin. J. Org. Chem. 2019, 39, 406.

    8. [8]

      Juang, F.-S.; Su, Y.-K.; Yu, H. H.; Liu, K.-J. Mater. Chem. Phys. 2003, 78, 620.

    9. [9]

      Xie, C.; Yan, F. Small 2017, 13, UNSP 1701822.

    10. [10]

      Geim, A. K.; Novoselov, K. S. Nat. Mater. 2007, 6, 183.

    11. [11]

      Wu, H.-Q.; Linghu, C.-Y.; Lu, H.-M.; Qian, H. Chin. Phys. B 2013, 22, 098106.

    12. [12]

      Zhu, J.; Yang, X.; Fu, Z.; He, J.; Wang, C.; Wu, W.; Zhang, L. Chemistry 2016, 22, 2515.

    13. [13]

      Gong, M.; Liu, Q.; Cook, B.; Kattel, B.; Wang, T.; Chan, W. L.; Ewing, D.; Casper, M.; Stramel, A.; Wu, J. Z. ACS Nano 2017, 11, 4114.

    14. [14]

      Haider, G.; Roy, P.; Chiang, C.-W.; Tan, W.-C.; Liou, Y.-R.; Chang, H.-T.; Liang, C.-T.; Shih, W.-H.; Chen, Y.-F. Adv. Funct. Mater. 2016, 26, 620.

    15. [15]

      Manga, K. K.; Wang, J.; Lin, M.; Zhang, J.; Nesladek, M.; Nalla, V.; Ji, W.; Loh, K. P. Adv. Mater. 2012, 24, 1697.

    16. [16]

      Dang, V. Q.; Han, G.-S.; Trung, T. Q.; Duy, L. T.; Jin, Y.-U.; Hwang, B.-U.; Jung, H.-S.; Lee, N.-E. Carbon 2016, 105, 353.

    17. [17]

      De Fazio, D.; Goykhman, I.; Yoon, D.; Bruna, M.; Eiden, A.; Milana, S.; Sassi, U.; Barbone, M.; Dumcenco, D.; Marinov, K.; Kis, A.; Ferrari, A. C. ACS Nano 2016, 10, 8252.

    18. [18]

      Xu, H.; Wu, J.; Feng, Q.; Mao, N.; Wang, C.; Zhang, J. Small 2014, 10, 2300.
       

    19. [19]

      Cai, J.; Ruffieux, P.; Jaafar, R.; Bieri, M.; Braun, T.; Blankenburg, S.; Muoth, M.; Seitsonen, A. P.; Saleh, M.; Feng, X.; Müllen, K.; Fasel, R. Nature 2010, 466, 470.

    20. [20]

      Eda, G.; Mattevi, C.; Yamaguchi, H.; Kim, H.; Chhowalla, M. J. Phys. Chem. C 2009, 113, 15768.
       

    21. [21]

      Cao, Y.; Yang, H.; Zhao, Y.; Zhang, Y.; Ren, T.; Jin, B.; He, J.; Sun, J.-L. ACS Photonics 2017, 4, 2797.

    22. [22]

      Cao, Y.; Zhu, J.; Xu, J.; He, J.; Sun, J. L.; Wang, Y.; Zhao, Z. Small 2014, 10, 2345.
       

    23. [23]

      Yang, H.; Cao, Y.; He, J.; Zhang, Y.; Jin, B.; Sun, J.-L.; Wang, Y.; Zhao, Z. Carbon 2017, 115, 561.

    24. [24]

      Huang, W.; Dong, X.; Cai, Y. Chin. Sci. Bull. 2016, 62, 635.

    25. [25]

      Yan, S.; Zhang, G.; Jiang, H.; Li, F.; Zhang, L.; Xia, Y.; Wang, Z.; Wu, Y.; Li, H. ACS Appl. Mater. Interfaces 2019, 11, 10736.

    26. [26]

      Sun, J.-L.; Zhang, W.; Zhu, J.-L.; Bao, Y. Opt. Express 2010, 18, 4066.
       

    27. [27]

      Zheng, J.-G.; Sun, J.-L.; Xue, P. Chin. Phys. Lett. 2011, 28, 127302.
       

    28. [28]

      Koppens, F. H.; Mueller, T.; Avouris, P.; Ferrari, A. C.; Vitiello, M. S.; Polini, M. Nat. Nanotech. 2014, 9, 780.

    29. [29]

      Ito, Y.; Zhang, W.; Li, J.; Chang, H.; Liu, P.; Fujita, T.; Tan, Y.; Yan, F.; Chen, M. Adv. Funct. Mater. 2016, 26, 1271.

    30. [30]

      Bae, J. J.; Yoon, J. H.; Jeong, S.; Moon, B. H.; Han, J. T.; Jeong, H. J.; Lee, G. W.; Hwang, H. R.; Lee, Y. H.; Jeong, S. Y.; Lim, S. C. Nanoscale 2015, 7, 15695.

    31. [31]

      Jiang, F.; Zheng, X. L.; Chen, L.; Hu, N.; Yang, J.; Liao, Y. J. New Chem. Mater. 2016, 44, 7.
       

    32. [32]

      Cao, Y.; Zhao, Y.; Wang, Y.; Zhang, Y.; Wen, J.; Zhao, Z.; Zhu, L. Carbon 2019, 144, 193.

    33. [33]

      Hummers, W. S.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80, 1339.
       

  • 加载中
    1. [1]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    2. [2]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    3. [3]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    4. [4]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    5. [5]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    6. [6]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    7. [7]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    8. [8]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    9. [9]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    10. [10]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    11. [11]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    12. [12]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    13. [13]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    14. [14]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    15. [15]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    16. [16]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    17. [17]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    18. [18]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    19. [19]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    20. [20]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

Metrics
  • PDF Downloads(6)
  • Abstract views(1178)
  • HTML views(262)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return