Citation: Yang Zhigang, Xiong Jia, Zhang Wei, Li Wen, Pan Wenhui, Zhang Jianguo, Gu Zhenyu, Huang Meina, Qu Junle. A Reversibly Intramolecular Cyclization Cy5 Optical Probe for Stochastic Optical Reconstruction Microscopy in Live Cell Mitochondria[J]. Acta Chimica Sinica, ;2020, 78(2): 130-139. doi: 10.6023/A19100374 shu

A Reversibly Intramolecular Cyclization Cy5 Optical Probe for Stochastic Optical Reconstruction Microscopy in Live Cell Mitochondria

  • Corresponding author: Xiong Jia,  Qu Junle, zhgyang@szu.edu.cn
  • These authors contributed equally to this work.
  • Received Date: 19 October 2019
    Available Online: 19 February 2019

    Fund Project: the National Natural Science Foundation of China 61875131Shenzhen Basic Research Project JCYJ20180305125549234the National Natural Science Foundation of China 61525503Project supported by the National Natural Science Foundation of China (Nos. 61875131, 61525503) and Shenzhen Basic Research Project (Nos. JCYJ20170818100931714, JCYJ20180305125549234)Shenzhen Basic Research Project JCYJ20170818100931714

Figures(9)

  • Single molecule localization microscopy as an advanced optical imaging technique is capable of super-resolution imaging of biological targets with the size below the optical diffraction limit. It is promising to provide powerful tools for the exploration of occurrence mechanism of severe diseases and precisely therapeutic method at single cell/organelle level, which exhibits wide applications in biomedical field. Generally, stochastic optical reconstruction microscopy (STORM) is prominently dependent on large amount of imaging buffers (Redox enzymes) and thiol-containing reagents for the ideal photoblinking behaviors of optical probes. However, the imaging buffer and thiol-containing reagents are harmful for the live cells, which make it difficult to carry out STORM imaging in live cells. Therefore, it is of significance to exploit new approaches to display STORM imaging in live cells. In this work, we provided a new strategy to facilitate the design of live cell STORM imaging probes with improved photo-blinking mechanism. A new fluorescent pentamethine cyanine probe with a thiol-attachment (SHCH2CH2CH2-) at the N-position of one indoline moiety was synthesized to show spontaneously photoblinking behavior caused by intramolecular ring-closing/-opening processes. The fluorescent probe is biologically compatible with rare cytotoxicity and suitable for the live cell imaging. The probe can exhibit excellent photo-blinking under the direct illumination of a single laser beam (656 nm) with low power density (200 W·cm-2 for solution sample and 100 W·cm-2 for cell sample, respectively), without using any imaging buffer or thiol-chemicals. And the fluorescent probe was used to test cell toxicity with CCK-8, showed almost no cytotoxicity after 24 h incubation. The photo-blinking frames were collected with an electron multiplying charge coupled device (EMCCD, 60 Hz), and different frames were used to pre-treat with ImageJ software and then reconstruct STORM images with a Falcon algorithm to show marked imaging resolution enhancement, compared with wide-field images, which provide a new protocol for biomedical imaging.
  • 加载中
    1. [1]

      Yang, Z.; Cao, J.; He, Y.; Yang, J. H.; Kim, T.; Peng, X.; Kim, J. S. Chem. Soc. Rev. 2014, 43, 4563.  doi: 10.1039/C4CS00051J

    2. [2]

      Yang, Z.; Lee, J. H.; Jeon, H. M.; Han, J. H.; Park, N.; He, Y.; Lee, H.; Hong, K. S.; Kang, C.; Kim, J. S. J. Am. Chem. Soc. 2013, 135, 11657.  doi: 10.1021/ja405372k

    3. [3]

      Yang, Z.; He, Y.; Lee, J.-H.; Park, N.; Suh, M.; Chae, W.-S.; Cao, J.; Peng, X.; Jung, H.; Kang, C.; Kim, J. S. J. Am. Chem. Soc. 2013, 135, 9181.  doi: 10.1021/ja403851p

    4. [4]

      Lee, M. H.; Yang, Z.; Lim, C. W.; Lee, Y. H.; Dongbang, S.; Kang, C.; Kim, J. S. Chem. Rev. 2013, 113, 5071.  doi: 10.1021/cr300358b

    5. [5]

      Peng, X.; Yang, Z.; Wang, J.; Fan, J.; He, Y.; Song, F.; Wang, B.; Sun, S.; Qu, J.; Qi, J.; Yan, M. J. Am. Chem. Soc. 2011, 133, 6626.  doi: 10.1021/ja1104014

    6. [6]

      Huang, C.; Chen, H.; Li, F. Chin. J. Org. Chem. 2019, 39, 2467(in Chinese).

    7. [7]

      Ju, Z.; Shu, P.; Xie, Z. Chin. J. Org. Chem. 2019, 39, 697(in Chinese).

    8. [8]

      Xie, Z.; Fu, M.; Yin, B. Chin. J. Org. Chem. 2018, 38, 1364(in Chinese).

    9. [9]

      Xi, Z.; Yuan, F.; Wang, Z. Acta Chim. Sinica 2018, 76, 460(in Chinese). 

    10. [10]

      Xu, Y.; Zhao, Y.; Zhang, Y. Acta Chim. Sinica 2018, 76, 393(in Chinese). 

    11. [11]

      Gu, T.; Shi, J.; Hua, Y. Acta Chim. Sinica 2017, 75, 991(in Chinese). 

    12. [12]

      Wang, Y.; Wang, W. Acta Chim. Sinica 2017, 75, 1061(in Chinese).
       

    13. [13]

      Yang, L.; Liu, B.; Li, N. Acta Chim. Sinica 2017, 75, 1047(in Chinese). 

    14. [14]

      Abbe, E. Arch. Mikroskop Anat. 1873, 9, 413.  doi: 10.1007/BF02956173

    15. [15]

      Yang, Z.; Sharma, A.; Qi, J.; Peng, X.; Lee, D. Y.; Hu, R.; Lin, D.; Qu, J.; Kim, J. S. Chem. Soc. Rev. 2016, 45, 4651.  doi: 10.1039/C5CS00875A

    16. [16]

      Huang, B.; Wang, W.; Bates, M.; Zhuang, X. Science 2008, 319, 807.  doi: 10.1126/science.1149860

    17. [17]

      Samanta, S.; He, Y.; Sharma, A.; Kim, J.; Pan, W.; Yang, Z.; Li, J.; Yan, W.; Liu, L.; Qu, J.; Kim, J. S. CHEM 2019, 5, 1697.  doi: 10.1016/j.chempr.2019.03.011

    18. [18]

      Dempsey, G. T.; Bates, M.; Kowtoniuk, W. E.; Liu, D. R.; Tsien, R. Y.; Zhuang, X. J. Am. Chem. Soc. 2009, 131, 18192.  doi: 10.1021/ja904588g

    19. [19]

      Dempsey, G. T.; Vaughan, J. C.; Chen, K. H.; Bates, M.; Zhuang, X. Nat. Methods 2011, 8, 1027.  doi: 10.1038/nmeth.1768

    20. [20]

      Uno, S.; Kamiya, M.; Yoshihara, T.; Sugawara, K.; Okabe, K.; Tarhan, M. C.; Fujita, H.; Funatsu, T.; Okada, Y.; Tobita S.; Urano, Y. Nat. Chem. 2014, 6, 681.  doi: 10.1038/nchem.2002

    21. [21]

      Samanta, S.; Gong, W.; Li, W.; Sharma, A.; Shim, I.; Zhang, W.; Das, P.; Pan, W.; Liu, L.; Yang, Z.; Qu, J.; Kim, J. S. Coord. Chem. Rev. 2019, 380, 17.  doi: 10.1016/j.ccr.2018.08.006

    22. [22]

      Hell, S. W. Science 2007, 316, 1153.  doi: 10.1126/science.1137395

    23. [23]

      Huang, B.; Bates, M.; Zhuang, X. Ann. Rev. Biochem. 2009, 78, 993.  doi: 10.1146/annurev.biochem.77.061906.092014

    24. [24]

      Betzig, E.; Patterson, G. H.; Sougrat, R.; Lindwasser, O. W.; Olenych, S.; Bonifacino, J. S.; Davidson, M. W.; Lippincott-Schwartz, J.; Hess, H. F. Science 2006, 313, 5793.

    25. [25]

      Rust, M. J.; Bates, M.; Zhuang, X. Nat. Methods 2006, 3, 793.  doi: 10.1038/nmeth929

    26. [26]

      Dertinger, T.; Colyer, R.; Iyer, G.; Weiss, S.; Enderlein, J. Proc. Natl. Acad. Sci. 2009, 106, 22287.  doi: 10.1073/pnas.0907866106

    27. [27]

      Bates, M.; Huang, B.; Dempsey, G. T.; Zhuang, X. Science 2007, 317, 1749.  doi: 10.1126/science.1146598

    28. [28]

      Mortensen, K. I.; Churchman, L. S.; Spudich, J. A.; Flyvbjerg, H. Nat. Methods 2010, 7, 3778.

    29. [29]

      Huang, B.; Babcock, H.; Zhuang, X. Cell 2010, 143, 1047.  doi: 10.1016/j.cell.2010.12.002

    30. [30]

      Miki, K.; Kojima, K.; Oride, K.; Harada, H.; Morinibu, A.; Ohe, K. Chem. Commun. 2017, 53, 7792.  doi: 10.1039/C7CC03035E

    31. [31]

      Min, J.; Vonesch, C.; Kirshner, H.; Carlini, L.; Olivier, N.; Holden, S.; Manley, S.; Ye, J. C.; Unser, M. Sci. Rep. 2014, 4, 4577.

  • 加载中
    1. [1]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    2. [2]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    3. [3]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

    4. [4]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    5. [5]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    6. [6]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    7. [7]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    8. [8]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

    9. [9]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    10. [10]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    11. [11]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    12. [12]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    13. [13]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    14. [14]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    15. [15]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    16. [16]

      Pingwei Wu . Application of Diamond Software in Simplex Teaching. University Chemistry, 2024, 39(3): 118-121. doi: 10.3866/PKU.DXHX202311043

    17. [17]

      Cunming Yu Dongliang Tian Jing Chen Qinglin Yang Kesong Liu Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008

    18. [18]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    19. [19]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Preparation of Superhydrophobic Surfaces and Their Application in Oily Wastewater Treatment: Design of a Comprehensive Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(2): 34-40. doi: 10.3866/PKU.DXHX202307081

    20. [20]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

Metrics
  • PDF Downloads(17)
  • Abstract views(869)
  • HTML views(158)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return