Citation: Yang Zhigang, Xiong Jia, Zhang Wei, Li Wen, Pan Wenhui, Zhang Jianguo, Gu Zhenyu, Huang Meina, Qu Junle. A Reversibly Intramolecular Cyclization Cy5 Optical Probe for Stochastic Optical Reconstruction Microscopy in Live Cell Mitochondria[J]. Acta Chimica Sinica, ;2020, 78(2): 130-139. doi: 10.6023/A19100374 shu

A Reversibly Intramolecular Cyclization Cy5 Optical Probe for Stochastic Optical Reconstruction Microscopy in Live Cell Mitochondria

  • Corresponding author: Xiong Jia,  Qu Junle, zhgyang@szu.edu.cn
  • These authors contributed equally to this work.
  • Received Date: 19 October 2019
    Available Online: 19 February 2019

    Fund Project: the National Natural Science Foundation of China 61875131Shenzhen Basic Research Project JCYJ20180305125549234the National Natural Science Foundation of China 61525503Project supported by the National Natural Science Foundation of China (Nos. 61875131, 61525503) and Shenzhen Basic Research Project (Nos. JCYJ20170818100931714, JCYJ20180305125549234)Shenzhen Basic Research Project JCYJ20170818100931714

Figures(9)

  • Single molecule localization microscopy as an advanced optical imaging technique is capable of super-resolution imaging of biological targets with the size below the optical diffraction limit. It is promising to provide powerful tools for the exploration of occurrence mechanism of severe diseases and precisely therapeutic method at single cell/organelle level, which exhibits wide applications in biomedical field. Generally, stochastic optical reconstruction microscopy (STORM) is prominently dependent on large amount of imaging buffers (Redox enzymes) and thiol-containing reagents for the ideal photoblinking behaviors of optical probes. However, the imaging buffer and thiol-containing reagents are harmful for the live cells, which make it difficult to carry out STORM imaging in live cells. Therefore, it is of significance to exploit new approaches to display STORM imaging in live cells. In this work, we provided a new strategy to facilitate the design of live cell STORM imaging probes with improved photo-blinking mechanism. A new fluorescent pentamethine cyanine probe with a thiol-attachment (SHCH2CH2CH2-) at the N-position of one indoline moiety was synthesized to show spontaneously photoblinking behavior caused by intramolecular ring-closing/-opening processes. The fluorescent probe is biologically compatible with rare cytotoxicity and suitable for the live cell imaging. The probe can exhibit excellent photo-blinking under the direct illumination of a single laser beam (656 nm) with low power density (200 W·cm-2 for solution sample and 100 W·cm-2 for cell sample, respectively), without using any imaging buffer or thiol-chemicals. And the fluorescent probe was used to test cell toxicity with CCK-8, showed almost no cytotoxicity after 24 h incubation. The photo-blinking frames were collected with an electron multiplying charge coupled device (EMCCD, 60 Hz), and different frames were used to pre-treat with ImageJ software and then reconstruct STORM images with a Falcon algorithm to show marked imaging resolution enhancement, compared with wide-field images, which provide a new protocol for biomedical imaging.
  • 加载中
    1. [1]

      Yang, Z.; Cao, J.; He, Y.; Yang, J. H.; Kim, T.; Peng, X.; Kim, J. S. Chem. Soc. Rev. 2014, 43, 4563.  doi: 10.1039/C4CS00051J

    2. [2]

      Yang, Z.; Lee, J. H.; Jeon, H. M.; Han, J. H.; Park, N.; He, Y.; Lee, H.; Hong, K. S.; Kang, C.; Kim, J. S. J. Am. Chem. Soc. 2013, 135, 11657.  doi: 10.1021/ja405372k

    3. [3]

      Yang, Z.; He, Y.; Lee, J.-H.; Park, N.; Suh, M.; Chae, W.-S.; Cao, J.; Peng, X.; Jung, H.; Kang, C.; Kim, J. S. J. Am. Chem. Soc. 2013, 135, 9181.  doi: 10.1021/ja403851p

    4. [4]

      Lee, M. H.; Yang, Z.; Lim, C. W.; Lee, Y. H.; Dongbang, S.; Kang, C.; Kim, J. S. Chem. Rev. 2013, 113, 5071.  doi: 10.1021/cr300358b

    5. [5]

      Peng, X.; Yang, Z.; Wang, J.; Fan, J.; He, Y.; Song, F.; Wang, B.; Sun, S.; Qu, J.; Qi, J.; Yan, M. J. Am. Chem. Soc. 2011, 133, 6626.  doi: 10.1021/ja1104014

    6. [6]

      Huang, C.; Chen, H.; Li, F. Chin. J. Org. Chem. 2019, 39, 2467(in Chinese).

    7. [7]

      Ju, Z.; Shu, P.; Xie, Z. Chin. J. Org. Chem. 2019, 39, 697(in Chinese).

    8. [8]

      Xie, Z.; Fu, M.; Yin, B. Chin. J. Org. Chem. 2018, 38, 1364(in Chinese).

    9. [9]

      Xi, Z.; Yuan, F.; Wang, Z. Acta Chim. Sinica 2018, 76, 460(in Chinese). 

    10. [10]

      Xu, Y.; Zhao, Y.; Zhang, Y. Acta Chim. Sinica 2018, 76, 393(in Chinese). 

    11. [11]

      Gu, T.; Shi, J.; Hua, Y. Acta Chim. Sinica 2017, 75, 991(in Chinese). 

    12. [12]

      Wang, Y.; Wang, W. Acta Chim. Sinica 2017, 75, 1061(in Chinese).
       

    13. [13]

      Yang, L.; Liu, B.; Li, N. Acta Chim. Sinica 2017, 75, 1047(in Chinese). 

    14. [14]

      Abbe, E. Arch. Mikroskop Anat. 1873, 9, 413.  doi: 10.1007/BF02956173

    15. [15]

      Yang, Z.; Sharma, A.; Qi, J.; Peng, X.; Lee, D. Y.; Hu, R.; Lin, D.; Qu, J.; Kim, J. S. Chem. Soc. Rev. 2016, 45, 4651.  doi: 10.1039/C5CS00875A

    16. [16]

      Huang, B.; Wang, W.; Bates, M.; Zhuang, X. Science 2008, 319, 807.  doi: 10.1126/science.1149860

    17. [17]

      Samanta, S.; He, Y.; Sharma, A.; Kim, J.; Pan, W.; Yang, Z.; Li, J.; Yan, W.; Liu, L.; Qu, J.; Kim, J. S. CHEM 2019, 5, 1697.  doi: 10.1016/j.chempr.2019.03.011

    18. [18]

      Dempsey, G. T.; Bates, M.; Kowtoniuk, W. E.; Liu, D. R.; Tsien, R. Y.; Zhuang, X. J. Am. Chem. Soc. 2009, 131, 18192.  doi: 10.1021/ja904588g

    19. [19]

      Dempsey, G. T.; Vaughan, J. C.; Chen, K. H.; Bates, M.; Zhuang, X. Nat. Methods 2011, 8, 1027.  doi: 10.1038/nmeth.1768

    20. [20]

      Uno, S.; Kamiya, M.; Yoshihara, T.; Sugawara, K.; Okabe, K.; Tarhan, M. C.; Fujita, H.; Funatsu, T.; Okada, Y.; Tobita S.; Urano, Y. Nat. Chem. 2014, 6, 681.  doi: 10.1038/nchem.2002

    21. [21]

      Samanta, S.; Gong, W.; Li, W.; Sharma, A.; Shim, I.; Zhang, W.; Das, P.; Pan, W.; Liu, L.; Yang, Z.; Qu, J.; Kim, J. S. Coord. Chem. Rev. 2019, 380, 17.  doi: 10.1016/j.ccr.2018.08.006

    22. [22]

      Hell, S. W. Science 2007, 316, 1153.  doi: 10.1126/science.1137395

    23. [23]

      Huang, B.; Bates, M.; Zhuang, X. Ann. Rev. Biochem. 2009, 78, 993.  doi: 10.1146/annurev.biochem.77.061906.092014

    24. [24]

      Betzig, E.; Patterson, G. H.; Sougrat, R.; Lindwasser, O. W.; Olenych, S.; Bonifacino, J. S.; Davidson, M. W.; Lippincott-Schwartz, J.; Hess, H. F. Science 2006, 313, 5793.

    25. [25]

      Rust, M. J.; Bates, M.; Zhuang, X. Nat. Methods 2006, 3, 793.  doi: 10.1038/nmeth929

    26. [26]

      Dertinger, T.; Colyer, R.; Iyer, G.; Weiss, S.; Enderlein, J. Proc. Natl. Acad. Sci. 2009, 106, 22287.  doi: 10.1073/pnas.0907866106

    27. [27]

      Bates, M.; Huang, B.; Dempsey, G. T.; Zhuang, X. Science 2007, 317, 1749.  doi: 10.1126/science.1146598

    28. [28]

      Mortensen, K. I.; Churchman, L. S.; Spudich, J. A.; Flyvbjerg, H. Nat. Methods 2010, 7, 3778.

    29. [29]

      Huang, B.; Babcock, H.; Zhuang, X. Cell 2010, 143, 1047.  doi: 10.1016/j.cell.2010.12.002

    30. [30]

      Miki, K.; Kojima, K.; Oride, K.; Harada, H.; Morinibu, A.; Ohe, K. Chem. Commun. 2017, 53, 7792.  doi: 10.1039/C7CC03035E

    31. [31]

      Min, J.; Vonesch, C.; Kirshner, H.; Carlini, L.; Olivier, N.; Holden, S.; Manley, S.; Ye, J. C.; Unser, M. Sci. Rep. 2014, 4, 4577.

  • 加载中
    1. [1]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    2. [2]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    3. [3]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    4. [4]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    5. [5]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    6. [6]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    7. [7]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    8. [8]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    9. [9]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    10. [10]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    11. [11]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

Metrics
  • PDF Downloads(17)
  • Abstract views(797)
  • HTML views(140)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return