Citation: Wang Yingmei, Zhu Daoming, Yang Yang, Zhang Ke, Zhang Xiuke, Lv Mingshan, Hu Li, Ding Shuaijie, Wang Liang. Rapid Synthesis of Bi@ZIF-8 Composite Nanomaterials for the Second Near-infrarad Window Photothermal Therapy and Controlled Drug Release[J]. Acta Chimica Sinica, ;2020, 78(1): 76-81. doi: 10.6023/A19100371 shu

Rapid Synthesis of Bi@ZIF-8 Composite Nanomaterials for the Second Near-infrarad Window Photothermal Therapy and Controlled Drug Release

  • Corresponding author: Wang Liang, 1390593786@qq.com
  • Received Date: 16 October 2019
    Available Online: 10 January 2019

Figures(4)

  • With the development of nanotechnology and its penetration into the field of medicine, nanotechnology has opened a new way for the treatment of tumors. Building an effective nanocarrier system is significant for the treatment of tumors. Compared with the traditional drug therapy, the drug which uses the nanomaterial as the carrier can greatly improve the treatment effect of the medicine and the side effect caused by the medicine in the in-vivo circulation process is extremely reduced simultaneously. At the same time, due to the protective effect of the carrier, the stability of the drug can be improved obviously. In this paper, we report a composite nanomaterial Bi@ZIF-8@TPZ (BZT) which is the formation of Bi nanoparticles and tirapazamine (TPZ) embedded in ZIF-8, this novel nanomaterial combines chemotherapy with photothermal therapy in the second near-infrared region (NIR-Ⅱ), and achieves a good therapeutic effect. First, we prepared a Bi@ZIF-8 (BZ) nanoparticle by a simple one-step reduction method. The morphology and microstructure of the nanoparticle were analyzed by transmission electron microscopy (TEM) and X-ray diffraction (XRD). Next, the anticancer drug tirapazamine (TPZ) was efficiently loaded into the BZ nanomaterial by physical mixing. The UV absorption spectrum proved that it could be successfully loaded, and the loading efficiency (LE) was 30%. Furthermore, the embedded Bi nanoparticles make the composite nanomaterials have good photothermal properties in NIR-Ⅱ area, and the photothermal conversion efficiency is about 31.75%. Because ZIF-8 has a good pH response ability, the material can achieve controllable drug release under weak acid (pH=5.5) and light conditions. In vitro results show that BZ loaded with the chemotherapeutic drug TPZ can achieve a good therapeutic effect. The composite materials reported in this article realize the synergistic treatment of chemotherapy and NIR-Ⅱ photothermal treatment, which makes it highly clinically useful.
  • 加载中
    1. [1]

      Zhang, X. J.; Li, W. X. Chin. J. Pharm. 2016, 47, 1065.  doi: 10.16522/j.cnki.cjph.2016.08.024

    2. [2]

      Melancon, M. P.; Zhou, M.; Li, C. Acc. Chem. Res. 2011, 44, 947.  doi: 10.1021/ar200022e

    3. [3]

      Yoo, D.; Lee, J.-H.; Shin, T.-H.; Cheon, J. Acc. Chem. Res. 2011, 44, 863.  doi: 10.1021/ar200085c

    4. [4]

      Ferrari, M. Nat. Rev. Cancer 2005, 5, 161.  doi: 10.1038/nrc1566

    5. [5]

      Lim, E.-K.; Kim, T.; Paik, S.; Haam, S.; Huh, Y.-M.; Lee, K. Chem. Rev. 2015, 115, 327.  doi: 10.1021/cr300213b

    6. [6]

      Feng, T.; Xue, Z. B.; Yi, J. J.; Jiang, X.; Feng, Y. Q.; Meng, S. X. Chin. J. Org. Chem. 2019, 39, 1891.  doi: 10.6023/cjoc201812016

    7. [7]

      Sherlock, S. P.; Tabakman, S. M.; Xie, L.; Dai, H. ACS Nano 2011, 5, 1505.  doi: 10.1021/nn103415x

    8. [8]

      Feng, L.; Li, K.; Shi, X.; Gao, M.; Liu, J.; Liu, Z. Adv. Healthcare Mater. 2014, 3, 1261.  doi: 10.1002/adhm.201300549

    9. [9]

      Feng, L.; Yang, X.; Shi, X.; Tan, X.; Peng, R.; Wang, J.; Liu, Z. Small 2013, 9, 1989.  doi: 10.1002/smll.201202538

    10. [10]

      Yu, X. J.; Li, A.; Zhao, C. Z.; Yang, K.; Chen, X. Y.; Li, W. W. ACS Nano 2017, 11, 3990.  doi: 10.1021/acsnano.7b00476

    11. [11]

      Liu, J.; Zheng, X.; Yan, L.; Zhou, L.; Tian, G.; Yin, W.; Wang, L.; Liu, Y.; Hu, Z.; Gu, Z.; Chen, C.; Zhao, Y. ACS Nano 2015, 9, 696.  doi: 10.1021/nn506137n

    12. [12]

      Zha, Z.; Yue, X.; Ren, Q.; Dai, Z. Adv. Mater. 2013, 25, 777.  doi: 10.1002/adma.201202211

    13. [13]

      Zhang, Z.; Wang, J.; Chen, C. Adv. Mater. 2013, 25, 3869.  doi: 10.1002/adma.201301890

    14. [14]

      Lovell, J. F.; Jin, C. S.; Huynh, E.; Jin, H.; Kim, C.; Rubinstein, J. L.; Chan, W. C. W.; Cao, W.; Wang, L. V.; Zheng, G. Nat. Mater. 2011, 10, 324.  doi: 10.1038/nmat2986

    15. [15]

      Zhang, Z.; Wang, J.; Nie, X.; Wen, T.; Ji, Y.; Wu, X.; Zhao, Y.; Chen, C. J. Am. Chem. Soc. 2014, 136, 7317.  doi: 10.1021/ja412735p

    16. [16]

      Orecchioni, M.; Cabizza, R.; Bianco, A.; Delogu, L. G. Theranostics. 2015, 5, 710.  doi: 10.7150/thno.11387

    17. [17]

      Yang, K.; Feng, L.; Shi, X.; Liu, Z. Chem. Soc. Rev. 2013, 42, 530.  doi: 10.1039/C2CS35342C

    18. [18]

      Wu, Z.-C.; Li, W.-P.; Luo, C.-H.; Su, C.-H.; Yeh, C.-S. Adv. Funct. Mater. 2015, 25, 6527.  doi: 10.1002/adfm.201503015

    19. [19]

      Chen, Z.; Wang, Q.; Wang, H.; Zhang, L.; Song, G.; Song, L.; Hu, J.; Wang, H.; Liu, J.; Zhu, M.; Zhao, D. Adv. Mater. 2013, 25, 2095.  doi: 10.1002/adma.201204616

    20. [20]

      Guo, C.; Yu, H.; Feng, B.; Gao, W.; Yan, M.; Zhang, Z.; Li, Y.; Liu, S. Biomaterials 2015, 52, 407.  doi: 10.1016/j.biomaterials.2015.02.054

    21. [21]

      Li, A.; Li, X.; Yu, X.; Li, W.; Zhao, R.; An, X.; Cui, D.; Chen, X.; Li, W. Biomaterials 2017, 112, 164.  doi: 10.1016/j.biomaterials.2016.10.024

    22. [22]

      Hu, K.-W.; Liu, T.-M.; Chung, K.-Y.; Huang, K.-S.; Hsieh, C.-T.; Sun, C.-K.; Yeh, C.-S. J. Am. Chem. Soc. 2009, 131, 14186.  doi: 10.1021/ja9062772

    23. [23]

      Ding, X.; Liow, C. H.; Zhang, M.; Huang, R.; Li, C.; Shen, H.; Liu, M.; Zou, Y.; Gao, N.; Zhang, Z.; Li, Y.; Wang, Q.; Li, S.; Jiang, J. J. Am. Chem. Soc. 2014, 136, 15684.  doi: 10.1021/ja508641z

    24. [24]

      Manikandan, M.; Hasan, N.; Wu, H.-F. Biomaterials 2013, 34, 5833.  doi: 10.1016/j.biomaterials.2013.03.077

    25. [25]

      Li, L.; Liu, Y.; Hao, P.; Wang, Z.; Fu, L.; Ma, Z.; Zhou, J. Biomaterials 2015, 41, 132.  doi: 10.1016/j.biomaterials.2014.10.075

    26. [26]

      Comin, A.; Manna, L. Chem. Soc. Rev. 2014, 43, 3957.  doi: 10.1039/C3CS60265F

    27. [27]

      Li, W.; Rong, P.; Yang, K.; Huang, P.; Sun, K.; Chen, X. Biomaterials 2015, 45, 18.  doi: 10.1016/j.biomaterials.2014.12.037

    28. [28]

      McMahon, J. M.; Schatz, G. C.; Gray, S. K. Phys. Chem. Chem. Phys. 2013, 15, 5415.  doi: 10.1039/C3CP43856B

    29. [29]

      Tediosi, R.; Armitage, N. P.; Giannini, E.; Marel, D. V. D. Phys. Rev. Lett. 2007, 99, 016406.  doi: 10.1103/PhysRevLett.99.016406

    30. [30]

      Li, B.; Ye, K.; Zhang, Y.; Qin, J.; Zou, R.; Xu, K.; Huang, X.; Xiao, Z.; Zhang, W.; Lu, X.; Hu, J. Adv. Mater. 2015, 27, 1339.  doi: 10.1002/adma.201404257

    31. [31]

      Lusic, H.; Grinstaff, M. W. Chem. Rev. 2013, 113, 1641.  doi: 10.1021/cr200358s

    32. [32]

      Swy, E. R.; Schwartz-Duval, A. S.; Shuboni, D. D.; Latourette, M. T.; Mallet, C. L.; Parys, M.; Cormode, D. P.; Shapiro, E. M. Nanoscale 2014, 6, 13104.  doi: 10.1039/C4NR01405G

    33. [33]

      Zhang, L.-L.; Tang, A.-Q.; Wang, Z.-H.; Zhang, M.-X.; Xu, L.; Zhu, L.-P. J. Funct. Polym. 2018, 31, 546.  doi: 10.14133/j.cnki.1008-9357.20180714001

    34. [34]

      Lin, H.; Gao, S.-S.; Dai, C.; Chen, Y.; Shi, J.-L. J. Am. Chem. Soc. 2017, 139, 16235.  doi: 10.1021/jacs.7b07818

  • 加载中
    1. [1]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    2. [2]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    3. [3]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    4. [4]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    5. [5]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    6. [6]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

    7. [7]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    8. [8]

      Cuicui Yang Bo Shang Xiaohua Chen Weiquan Tian . Understanding the Wave-Particle Duality and Quantization of Confined Particles Starting from Classic Mechanics. University Chemistry, 2025, 40(3): 408-414. doi: 10.12461/PKU.DXHX202407066

    9. [9]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    10. [10]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    11. [11]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    12. [12]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    13. [13]

      Huanhuan XIEYingnan SONGLei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281

    14. [14]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    15. [15]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(11): 0-0.

    16. [16]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    17. [17]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    18. [18]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

    19. [19]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    20. [20]

      Mi Wen Baoshuo Jia Yongqi Chai Tong Wang Jianbo Liu Hailong Wu . Improvement of Fluorescence Quantitative Analysis Experiment: Simultaneous Determination of Rhodamine 6G and Rhodamine 123 in Food Using Chemometrics-Assisted Three-Dimensional Fluorescence Method. University Chemistry, 2025, 40(4): 390-398. doi: 10.12461/PKU.DXHX202405147

Metrics
  • PDF Downloads(56)
  • Abstract views(3216)
  • HTML views(1001)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return