Citation: Lü Xijuan, Zhang Yunhong. Volatility of Ammonium Nitrate in Ultra-viscous Aerosol Droplets by Optical Tweezers[J]. Acta Chimica Sinica, ;2020, 78(4): 326-329. doi: 10.6023/A19100369 shu

Volatility of Ammonium Nitrate in Ultra-viscous Aerosol Droplets by Optical Tweezers

  • Corresponding author: Zhang Yunhong, yhz@bit.edu.cn
  • Received Date: 15 October 2019
    Available Online: 11 March 2020

    Fund Project: the National Natural Science Foundation of China 91544223Project supported by the National Natural Science Foundation of China (No. 91544223)

Figures(4)

  • The partitioning of volatile substances in atmospheric particulates is a hot topic in atmospheric science. Ammonium nitrate (NH4NO3) is an important inorganic component in atmospheric aerosols, which is a salt with relatively high vapor pressure. Particles containing NH4NO3 are equilibrium with gaseous NH3 and HNO3 and the partitioning between particle and gas is a strong function of temperature and relative humidity. Atmospheric aerosols have both natural and anthropogenic sources and consist of both organic and inorganic components, and many of them will likely form in semisolid, glassy, and high viscous state in the atmosphere, which show nonequilibrium kinetic characteristics at low relative humidity conditions. In this research, in order to understand the volatility of ammonium nitrate in ultra-viscous aerosol droplets, optical tweezers coupled with cavity-enhanced Raman spectroscopy were employed to observe the volatility of ammonium nitrate in the mixture of NH4NO3/MgSO4 and NH4NO3/sucrose droplets. Optical tweezers-stimulated Raman spectroscopy, compared with other suspension techniques, can not only suspend droplets, but also obtain the chemical composition, structure of droplets and other information according to the conventional Raman scattering spectra of droplets. The radius and refractive index of droplets can be calculated according to stimulated Raman-Mie scattering resonance. The advantages of optical tweezers stimulated Raman spectroscopy are that particle radius can be accurately measured, chemical composition, phase and shape can be controlled, and long-term observation can be realized. Here, the radii and refractive indexes of the levitated droplets were determined in real time using the wavelength positions of stimulated Raman spectra, and the effective vapor pressures of ammonium nitrate at different relative humidity (RH) were obtained according to Maxwell equation. For the droplets with ammonium nitrate/sucrose molar ratio of 1:1, the effective vapor pressure of ammonium nitrate decreased with the decrease of RH. When the RH decreased from 70% to 20%, the effective vapor pressure of ammonium nitrate decreased from (3.577±0.82)×10-5 to (6.55±1.36)×10-6 Pa, compared to the vapor pressure of pure ammonium nitrate (1.67±0.24)×10-3 to (6.64±0.3)×10-3 Pa, the evaporation of ammonium nitrate in the mixed droplet was suppressed by sucrose, especially at low RH. For the mixed droplets with ammonium nitrate/magnesium sulfate molar ratio of 1:1, a similar phenomenon was observed. When the RH decreased from 70% to 40%, the effective vapor pressure of ammonium nitrate decreased from (4.38±0.21)×10-3 to (8.13±2.34)×10-5 Pa. The results showed that the effective saturated vapor pressures of ammonium nitrate in ultra-viscous droplets at low humidity were 1~3 orders lower than those of pure ammonium nitrate. Obviously, the volatilization of ammonium nitrate in droplets was inhibited at low relative humidity.
  • 加载中
    1. [1]

      Sun, J.; Liu, L.; Xu, L.; Wang, Y.; Wu, Z.; Hu, M.; Shi, Z.; Li, Y.; Zhang, X.; Chen, J.; Li, W. J. Geophys. Res. 2018, 123, 1234.

    2. [2]

      Zhang, X. Y.; Wang, J. Z.; Wang, Y. Q.; Liu, H. L.; Sun, J. Y.; Zhang, Y. M. Atmos. Chem. Phys. 2015, 15, 12935.  doi: 10.5194/acp-15-12935-2015

    3. [3]

      Cai, C.; Tan, S.; Chen, H.; Ma, J.; Wang, Y.; Reid, J. P.; Zhang, Y. Phys. Chem. Chem. Phys. 2015, 17, 29753.  doi: 10.1039/C5CP05181A

    4. [4]

      Marshall, F. H.; Miles, R. E. H.; Song, Y.-C.; Ohm, P. B.; Power, R. M.; Reid, J. P.; Dutcher, C. S. Chem. Sci. 2016, 7, 1298.  doi: 10.1039/C5SC03223G

    5. [5]

      Hu, M.; Shang, D.; Guo, S.; Wu, Z. Acta Chim. Sinica 2016, 74, 385.  doi: 10.3969/j.issn.0253-2409.2016.04.001
       

    6. [6]

      Guo, S.; Hu, M.; Shang, D.; Guo, Q.; Hu, W. Acta Chim. Sinica 2014, 72, 145.

    7. [7]

      Hu, D.; Chen, J.; Ye, X.; Li, L.; Yang, X. Atmos. Environ. 2011, 45, 2349.  doi: 10.1016/j.atmosenv.2011.02.024

    8. [8]

      Chien, W.-M.; Chandra, D.; Lau, K. H.; Hildenbrand, D. L.; Helmy, A. M. J. Chem. Thermodyn. 2010, 42, 846.  doi: 10.1016/j.jct.2010.01.012

    9. [9]

      Hong, J.; Äijälä, M.; Häme, S. A. K.; Hao, L. Q.; Duplissy, J.; Heikkinen, L. M.; Nie, W.; Mikkilä, J.; Kulmala, M.; Prisle, N. L.; Virtanen, A.; Ehn, M.; Paasonen, P.; Worsnop, D. R.; Riipinen, I.; Petäjä, T.; Kerminen, V.-M. Atmos. Chem. Phys. 2017, 17, 4387.  doi: 10.5194/acp-17-4387-2017

    10. [10]

      Lv, X.; Gao, X.; Ma, J.; Zhang, Y. Spectrosc. Spect. Anal. 2019, 39, 1648.

    11. [11]

      Wang, L. N.; Cai, C.; Zhang, Y. H. J. Phys. Chem. B 2017, 121, 8551.  doi: 10.1021/acs.jpcb.7b05551

    12. [12]

      Krieger, A. A.; Zardini, A. A.; Krieger, U. K. Opt. Express 2009, 17, 4659.  doi: 10.1364/OE.17.004659

  • 加载中
    1. [1]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    2. [2]

      Qingjun PANZhongliang GONGYuwu ZHONG . Advances in modulation of the excited states of photofunctional iron complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 45-58. doi: 10.11862/CJIC.20240365

    3. [3]

      Runhua Chen Qiong Wu Jingchen Luo Xiaolong Zu Shan Zhu Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052

    4. [4]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    5. [5]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    6. [6]

      Lianghong Ye Junqing Ni Zhongyi Yan Zhanming Zhang Can Zhu Mo Sun . Chemical Fuel-Driven Non-Equilibrium Color Change. University Chemistry, 2025, 40(3): 349-354. doi: 10.12461/PKU.DXHX202406109

    7. [7]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    8. [8]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    9. [9]

      Jihua Deng Xinshi Wu Dichang Zhong . Exploration of Green Teaching and Ideological and Political Education in Chemical Experiment of “Preparation of Ammonium Ferrous Sulfate”. University Chemistry, 2024, 39(10): 325-329. doi: 10.12461/PKU.DXHX202405046

    10. [10]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    11. [11]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    12. [12]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

    13. [13]

      Yuhang Jiang Weijie Liu Jiaqi Cai Jiayue Chen Yanping Ren Pingping Wu Liulin Yang . A Journey into the Science and Art of Sugar: “Dispersion of Light and Optical Rotation of Matter” Science Popularization Experiment. University Chemistry, 2024, 39(9): 288-294. doi: 10.12461/PKU.DXHX202401054

    14. [14]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

    15. [15]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    16. [16]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    17. [17]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

    18. [18]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    19. [19]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    20. [20]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

Metrics
  • PDF Downloads(22)
  • Abstract views(888)
  • HTML views(154)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return