Citation: Gao Simeng, Xia Kun, Kang Zhihong, Nai Yongning, Yuan Ruixia, Niu Ruixia. Molecular Dynamics Simulation of "Quasi-Gemini" Anionic Surfactant at the Decane/Water Interface[J]. Acta Chimica Sinica, ;2020, 78(2): 155-160. doi: 10.6023/A19100364 shu

Molecular Dynamics Simulation of "Quasi-Gemini" Anionic Surfactant at the Decane/Water Interface

  • Corresponding author: Gao Simeng, gaosimeng2006@126.com Niu Ruixia, niuruixia999@sina.com
  • Received Date: 12 October 2019
    Available Online: 10 February 2020

    Fund Project: Northeast Petroleum University Talent Engineering Research Start Fund RC201724the National Natural Science Foundation of China 21606042Project supported by the National Natural Science Foundation of China (No. 21606042), Northeast Petroleum University Cultivation Fund (No. 2017PYQZL-08) and Northeast Petroleum University Talent Engineering Research Start Fund (No. RC201724)Northeast Petroleum University Cultivation Fund 2017PYQZL-08

Figures(7)

  • Anionic surfactants play a key role in many industrial fields such as drug delivery, detergent, oil displacement and food processing because of their unique amphiphilic properties. The structure of surfactant in oil-water system has a great influence on the interfacial behavior. It is of great significance to study the structure and interfacial properties of surfactants. In this paper, the all-atomic molecular dynamics method was used to study the aggregation behavior of nonylphenol-substituted series of alkyl sulfonate surfactants (Cn-NPAS) at the decane/water interface. The effects of different sulfoalkyl chain lengths on the interfacial properties of nonylphenol-substituted alkyl sulfonate surfactants were investigated by analyzing the interface thickness, interface formation energy, interfacial tension, the radial distribution function and coordination number. Simulation results have shown that the interfacial thickness increases at first and then decreases as the length of sulfoalkyl chain increases. The same trend was found in the results of the interface formation energy (IFE). The absolute value of IFE follows the order of C12-NPAS > C14-NPAS > C10-NPAS > C16-NPAS > C8-NPAS, indicating that the C12-NPAS is the most stable system in terms of energy which should be attribute to the stronger aggregation ability. Moreover, it is observed that the trend of interfacial tension is in agreement with that of interface formation energy and the interface thickness. Surfactant C12-NPAS induces the minimum interfacial tension. The calculation results are consistent with the experimental data. Furthermore, the radial distribution function and the coordination number of water around the surfactant headgroup were obtained for evaluating the interaction strength between the hydrophilic headgroup and water molecules. The results are well in accordance with the trend of the interface formation energy and interfacial tension. This indicates that the length of alkyl tail affect the interaction between hydrophilic headgroup and water indirectly. Simulation results suggest that the length of alkyl tail plays a dominant role in the interfacial behaviors. We expect that the results of this study could be valuable for the understanding of mechanism and the design of high performance surfactants.
  • 加载中
    1. [1]

      He, X. B.; Guvench, O.; Mackerell Jr., A. D.; Klein, M. L. J. Phys. Chem. B 2010, 114, 9787.  doi: 10.1021/jp101860v

    2. [2]

      Yu, Y. X.; Zhao, J.; Guvench, O.; Bayly, A. E. Chin. J. Chem. Eng. 2008, 16, 517.  doi: 10.1016/S1004-9541(08)60115-9

    3. [3]

      Zhao, W. W.; Wang, Y. L. Acta Chim. Sinica 2019, 77, 717(in Chinese).
       

    4. [4]

      Yan, H.; Guo, X. L.; Liu, C. B.; Yuan, S. L. Langmuir 2011, 27, 5762.  doi: 10.1021/la1049869

    5. [5]

      Lin, C.; Pan, R. M.; Xing, P. Chin. J. Org. Chem. 2018, 38, 3260(in Chinese).

    6. [6]

      Zhao, Y.; Wang, C.; Chow, A. H.; Ren, K.; Gong, T.; Zhang, Z. R.; Zheng, Y. Int. J. Pharm. B 2010, 383, 170.  doi: 10.1016/j.ijpharm.2009.08.035

    7. [7]

      Liao, G. Z.; Wang, Q.; Wang, H. Z.; Liu, W. D.; Wang, Z. M. Acta Petrolei Sinica 2017, 38, 196(in Chinese).

    8. [8]

      Yu, T.; Liu, H. J.; Ding, W. Chin. J. Appl. Chem. 2008, 25, 1107(in Chinese).

    9. [9]

      Chen, X. M.; Chen, Y.; Liu, Y. Chin. J. Chem. 2018, 36, 526.  doi: 10.1002/cjoc.201800063

    10. [10]

      Li, H. F.; Qiao, F. L.; Fan, Y. X.; Wang, Y. L. Acta Chim. Sinica 2018, 76, 564(in Chinese).
       

    11. [11]

      Li, M.; Zhang, C.; Yang, X. Chin. J. Chem. 2017, 35, 1706.  doi: 10.1002/cjoc.201700277

    12. [12]

      Li, Z. Q.; Guo, X. L.; Wang, H. Y.; Li, Q. H.; Yuan, S. L. Acta Phys.-Chim. Sin. 2009, 25, 6(in Chinese).

    13. [13]

      Jang, S. S.; Lin, S. T.; Maiti, P. K.; Blanco, M.; Goddard, W. A.; Shuler, P. J. Phys. Chem. B 2004, 108, 12130.  doi: 10.1021/jp048773n

    14. [14]

      Sun, H. Q.; Xiao, H. Y.; Liu, X. H. Sci. Chin. Chem. 2011, 54, 1078(in Chinese).

    15. [15]

      Shi, J.; Lv, K.; Yuan, S. L. J. Shandong Univ. (Engineering Science) 2012, 42, 77(in Chinese).

    16. [16]

      Wang, Y. F.; Yu, W. Z.; Hu, S. Q. J. Chin. Univ. Petro. 2011, 35, 153(in Chinese).

    17. [17]

      Niu, R. X.; Wang, D. Q.; Wang, J. L.; Wang, C.; Song, H. J. Chem. Ind. Eng. 2016, 67, 2944(in Chinese).

    18. [18]

      Tan, J. S.; Zhang, L.; Lim, F. C.; Cheong, D. W. Langmuir 2017, 33, 4461.  doi: 10.1021/acs.langmuir.7b00171

    19. [19]

      Martínez, L.; Andrade, R.; Birgin, E. G. J. Comput. Chem. 2009, 30, 2157.  doi: 10.1002/jcc.21224

    20. [20]

      Lundborg, M.; Lindahl, E. J. Phys. Chem. B 2014, 119, 810.

    21. [21]

      Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A. J. Comp. Chem. 2004, 25, 1157.  doi: 10.1002/jcc.20035

    22. [22]

      Sastry, N. V.; Valand, M. K. J. Chem. Thermodyn. 1998, 30, 929.  doi: 10.1006/jcht.1998.0363

    23. [23]

      Pai, Y. H.; Chen, L. J. J. Chem. Eng. Data 1998, 43, 665.  doi: 10.1021/je980034a

    24. [24]

      Hou, M. D.; Li, H. P.; Hu, Z. Z.; Song, H. W. China Surfactant Detergent & Cosmetics 2018, 48, 243(in Chinese).

    25. [25]

      Hu, X. Y.; Song, X. W.; Li, Q. W.; He, X. J.; Li, Y. Acta Chim. Sinica 2009, 67, 1691(in Chinese).
       

    26. [26]

      Olayiwola, S. O.; Dejam, M. Fuel 2019, 241, 1045.  doi: 10.1016/j.fuel.2018.12.122

    27. [27]

      Jiang, R. J.; Luo, J. H.; Bai, R. B.; Jiang, B.; Zhou, G. Chem. J. Chin. Univ. 2017, 38, 1804(in Chinese).

    28. [28]

      Zeppieri, S.; Rodriguez, J.; López, R. A. J. Chem. Eng. Data 2001, 46, 1086.  doi: 10.1021/je000245r

    29. [29]

      Wang, J.; Wang, J. X.; Zeng, F. G.; Wu, X. L. Acta Chim. Sinica 2010, 68, 1653(in Chinese).
       

    30. [30]

      Liu, M. T.; Pu, M. F.; Ma, H. W. Chem. J. Chin. Univ. 2012, 33, 1319(in Chinese).

    31. [31]

      Liu, Z. Y.; Liao, Q.; Jin, Z. Q.; Zhang, L.; Zhang, L. Acta Phys.-Chim. Sinica 2016, 32, 1168(in Chinese).

  • 加载中
    1. [1]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    2. [2]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    3. [3]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    4. [4]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    5. [5]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    6. [6]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    7. [7]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    8. [8]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    9. [9]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    10. [10]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    11. [11]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    12. [12]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    13. [13]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    14. [14]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    15. [15]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

Metrics
  • PDF Downloads(19)
  • Abstract views(796)
  • HTML views(108)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return