Citation: Gao Simeng, Xia Kun, Kang Zhihong, Nai Yongning, Yuan Ruixia, Niu Ruixia. Molecular Dynamics Simulation of "Quasi-Gemini" Anionic Surfactant at the Decane/Water Interface[J]. Acta Chimica Sinica, ;2020, 78(2): 155-160. doi: 10.6023/A19100364 shu

Molecular Dynamics Simulation of "Quasi-Gemini" Anionic Surfactant at the Decane/Water Interface

  • Corresponding author: Gao Simeng, gaosimeng2006@126.com Niu Ruixia, niuruixia999@sina.com
  • Received Date: 12 October 2019
    Available Online: 10 February 2020

    Fund Project: Northeast Petroleum University Talent Engineering Research Start Fund RC201724the National Natural Science Foundation of China 21606042Project supported by the National Natural Science Foundation of China (No. 21606042), Northeast Petroleum University Cultivation Fund (No. 2017PYQZL-08) and Northeast Petroleum University Talent Engineering Research Start Fund (No. RC201724)Northeast Petroleum University Cultivation Fund 2017PYQZL-08

Figures(7)

  • Anionic surfactants play a key role in many industrial fields such as drug delivery, detergent, oil displacement and food processing because of their unique amphiphilic properties. The structure of surfactant in oil-water system has a great influence on the interfacial behavior. It is of great significance to study the structure and interfacial properties of surfactants. In this paper, the all-atomic molecular dynamics method was used to study the aggregation behavior of nonylphenol-substituted series of alkyl sulfonate surfactants (Cn-NPAS) at the decane/water interface. The effects of different sulfoalkyl chain lengths on the interfacial properties of nonylphenol-substituted alkyl sulfonate surfactants were investigated by analyzing the interface thickness, interface formation energy, interfacial tension, the radial distribution function and coordination number. Simulation results have shown that the interfacial thickness increases at first and then decreases as the length of sulfoalkyl chain increases. The same trend was found in the results of the interface formation energy (IFE). The absolute value of IFE follows the order of C12-NPAS > C14-NPAS > C10-NPAS > C16-NPAS > C8-NPAS, indicating that the C12-NPAS is the most stable system in terms of energy which should be attribute to the stronger aggregation ability. Moreover, it is observed that the trend of interfacial tension is in agreement with that of interface formation energy and the interface thickness. Surfactant C12-NPAS induces the minimum interfacial tension. The calculation results are consistent with the experimental data. Furthermore, the radial distribution function and the coordination number of water around the surfactant headgroup were obtained for evaluating the interaction strength between the hydrophilic headgroup and water molecules. The results are well in accordance with the trend of the interface formation energy and interfacial tension. This indicates that the length of alkyl tail affect the interaction between hydrophilic headgroup and water indirectly. Simulation results suggest that the length of alkyl tail plays a dominant role in the interfacial behaviors. We expect that the results of this study could be valuable for the understanding of mechanism and the design of high performance surfactants.
  • 加载中
    1. [1]

      He, X. B.; Guvench, O.; Mackerell Jr., A. D.; Klein, M. L. J. Phys. Chem. B 2010, 114, 9787.  doi: 10.1021/jp101860v

    2. [2]

      Yu, Y. X.; Zhao, J.; Guvench, O.; Bayly, A. E. Chin. J. Chem. Eng. 2008, 16, 517.  doi: 10.1016/S1004-9541(08)60115-9

    3. [3]

      Zhao, W. W.; Wang, Y. L. Acta Chim. Sinica 2019, 77, 717(in Chinese).
       

    4. [4]

      Yan, H.; Guo, X. L.; Liu, C. B.; Yuan, S. L. Langmuir 2011, 27, 5762.  doi: 10.1021/la1049869

    5. [5]

      Lin, C.; Pan, R. M.; Xing, P. Chin. J. Org. Chem. 2018, 38, 3260(in Chinese).

    6. [6]

      Zhao, Y.; Wang, C.; Chow, A. H.; Ren, K.; Gong, T.; Zhang, Z. R.; Zheng, Y. Int. J. Pharm. B 2010, 383, 170.  doi: 10.1016/j.ijpharm.2009.08.035

    7. [7]

      Liao, G. Z.; Wang, Q.; Wang, H. Z.; Liu, W. D.; Wang, Z. M. Acta Petrolei Sinica 2017, 38, 196(in Chinese).

    8. [8]

      Yu, T.; Liu, H. J.; Ding, W. Chin. J. Appl. Chem. 2008, 25, 1107(in Chinese).

    9. [9]

      Chen, X. M.; Chen, Y.; Liu, Y. Chin. J. Chem. 2018, 36, 526.  doi: 10.1002/cjoc.201800063

    10. [10]

      Li, H. F.; Qiao, F. L.; Fan, Y. X.; Wang, Y. L. Acta Chim. Sinica 2018, 76, 564(in Chinese).
       

    11. [11]

      Li, M.; Zhang, C.; Yang, X. Chin. J. Chem. 2017, 35, 1706.  doi: 10.1002/cjoc.201700277

    12. [12]

      Li, Z. Q.; Guo, X. L.; Wang, H. Y.; Li, Q. H.; Yuan, S. L. Acta Phys.-Chim. Sin. 2009, 25, 6(in Chinese).

    13. [13]

      Jang, S. S.; Lin, S. T.; Maiti, P. K.; Blanco, M.; Goddard, W. A.; Shuler, P. J. Phys. Chem. B 2004, 108, 12130.  doi: 10.1021/jp048773n

    14. [14]

      Sun, H. Q.; Xiao, H. Y.; Liu, X. H. Sci. Chin. Chem. 2011, 54, 1078(in Chinese).

    15. [15]

      Shi, J.; Lv, K.; Yuan, S. L. J. Shandong Univ. (Engineering Science) 2012, 42, 77(in Chinese).

    16. [16]

      Wang, Y. F.; Yu, W. Z.; Hu, S. Q. J. Chin. Univ. Petro. 2011, 35, 153(in Chinese).

    17. [17]

      Niu, R. X.; Wang, D. Q.; Wang, J. L.; Wang, C.; Song, H. J. Chem. Ind. Eng. 2016, 67, 2944(in Chinese).

    18. [18]

      Tan, J. S.; Zhang, L.; Lim, F. C.; Cheong, D. W. Langmuir 2017, 33, 4461.  doi: 10.1021/acs.langmuir.7b00171

    19. [19]

      Martínez, L.; Andrade, R.; Birgin, E. G. J. Comput. Chem. 2009, 30, 2157.  doi: 10.1002/jcc.21224

    20. [20]

      Lundborg, M.; Lindahl, E. J. Phys. Chem. B 2014, 119, 810.

    21. [21]

      Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A. J. Comp. Chem. 2004, 25, 1157.  doi: 10.1002/jcc.20035

    22. [22]

      Sastry, N. V.; Valand, M. K. J. Chem. Thermodyn. 1998, 30, 929.  doi: 10.1006/jcht.1998.0363

    23. [23]

      Pai, Y. H.; Chen, L. J. J. Chem. Eng. Data 1998, 43, 665.  doi: 10.1021/je980034a

    24. [24]

      Hou, M. D.; Li, H. P.; Hu, Z. Z.; Song, H. W. China Surfactant Detergent & Cosmetics 2018, 48, 243(in Chinese).

    25. [25]

      Hu, X. Y.; Song, X. W.; Li, Q. W.; He, X. J.; Li, Y. Acta Chim. Sinica 2009, 67, 1691(in Chinese).
       

    26. [26]

      Olayiwola, S. O.; Dejam, M. Fuel 2019, 241, 1045.  doi: 10.1016/j.fuel.2018.12.122

    27. [27]

      Jiang, R. J.; Luo, J. H.; Bai, R. B.; Jiang, B.; Zhou, G. Chem. J. Chin. Univ. 2017, 38, 1804(in Chinese).

    28. [28]

      Zeppieri, S.; Rodriguez, J.; López, R. A. J. Chem. Eng. Data 2001, 46, 1086.  doi: 10.1021/je000245r

    29. [29]

      Wang, J.; Wang, J. X.; Zeng, F. G.; Wu, X. L. Acta Chim. Sinica 2010, 68, 1653(in Chinese).
       

    30. [30]

      Liu, M. T.; Pu, M. F.; Ma, H. W. Chem. J. Chin. Univ. 2012, 33, 1319(in Chinese).

    31. [31]

      Liu, Z. Y.; Liao, Q.; Jin, Z. Q.; Zhang, L.; Zhang, L. Acta Phys.-Chim. Sinica 2016, 32, 1168(in Chinese).

  • 加载中
    1. [1]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    2. [2]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    3. [3]

      Xuan Zhou Yi Fan Zhuoqi Jiang Zhipeng Li Guowen Yuan Laiying Zhang Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111

    4. [4]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    5. [5]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    6. [6]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    7. [7]

      Yuena Yu Fang Fang . Microwave-Assisted Synthesis of Safinamide Methanesulfonate. University Chemistry, 2024, 39(11): 210-216. doi: 10.3866/PKU.DXHX202401076

    8. [8]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    9. [9]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065

    10. [10]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    11. [11]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    12. [12]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    13. [13]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    14. [14]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    15. [15]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    16. [16]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    17. [17]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    18. [18]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    19. [19]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    20. [20]

      Yanhui Sun Junmin Nan Guozheng Ma Xiaoxi Zuo Guoliang Li Xiaoming Lin . Exploration and Teaching Practice of Ideological and Political Elements in Interface Physical Chemistry: Taking “Additional Pressure on Curved Surfaces” as an Teaching Example. University Chemistry, 2024, 39(11): 20-27. doi: 10.3866/PKU.DXHX202402023

Metrics
  • PDF Downloads(19)
  • Abstract views(833)
  • HTML views(112)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return