Citation: Zhao Xiaochun, Ding Tianqi, Jiang Lüqi, Yi Wenbin. One-Pot Synthesis of Monofluoromethoxy Arenes from Aryl Halides, Arylboronic Acids and Arenes[J]. Acta Chimica Sinica, ;2019, 77(12): 1263-1267. doi: 10.6023/A19090325 shu

One-Pot Synthesis of Monofluoromethoxy Arenes from Aryl Halides, Arylboronic Acids and Arenes

  • Corresponding author: Yi Wenbin, yiwb@njust.edu.cn
  • Received Date: 3 September 2019
    Available Online: 11 November 2019

    Fund Project: the National Natural Science Foundation of China 21476116the National Natural Science Foundation of China 21776138Project supported by the National Natural Science Foundation of China (Nos. 21776138, 21476116), the Fundamental Research Funds for the Central Universities (Nos. 30916011102, 30918011314), the Natural Science Foundation of Jiangsu Province (No. BK20180476), the Qing Lan and Six Talent Peaks in Jiangsu Province and the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Fundamental Research Funds for the Central Universities 30916011102the Fundamental Research Funds for the Central Universities 30918011314the Natural Science Foundation of Jiangsu Province BK20180476

Figures(3)

  • Fluorine-containing compounds have been widely used in the fields of pharmaceuticals, agrochemicals and functional materials, mainly due to the well-known "fluorine effect" of the fluoroalkyl groups on the physical, chemical and biological properties of molecules. Tri- and difluoromethyl ethers play an important role in many medicinally compounds. Among various fluorinated moieties, ORf-containing groups have attracted much more attention very recently owing to the impressive conformational changes and maximal shifts in electron distribution brought by fluorine. The α-fluorine substitution of ethers shortens and strengthens the C-O bond and thus improves the in vivo oxidative stability of the ether moiety of a drug. Over the past few decades, there are some reliable ways on accessing trifluoromethyl ethers and difluomethyl ethers. Considering the importance of synthesis of monofluoromethoxy arenes and the substrate limitation (phenols or alcohols) of current state, a method was developed to access monofluoromethoxy arenes from aryl halides, arylboronic acids and arenes via a one-pot synthesis. Phenols can be prepared by the hydroxylation of aryl halides catalyzed by transition-metal complexes. In this work, a new strategy was envisioned a two-step sequence for the conversion of aryl halides to monofluoromethoxy arenes based on the palladium-catalyzed conversion of aryl phenols and in situ conversion of the resulting phenoxides with monofluoromethylating reagents. The investigation began with optimization of the conversion of 1-chloro-4-methoxy-benzene. The approach was achieved by using Pd2(dba)3 (2 mol%) as the catalyst under an inert atmosphere, di-tert-bu-tyl(2', 4', 6'-triisopropyl-[1, 1'-biphenyl]-2-yl)phosphane (8 mol%) as the ligand, KOH (1 equiv.) as the nucleophile, and 1, 4-dioxane/H2O (V:V=5:3) as the solvent. Further monofluoromethylation used fluoromethyl iodide (2 equiv.) as the monofluoromethylating reagent and CH3CN as the co-solvent. Finally, the desired product was obtained in 82% yield. Therefore, this method was also applied to drugs, for example, Loratadine could be converted to the corresponding product (2o) in 53% yield and Fenofibrate, reacting to form the monofluoromethoxy arenes (2p) in modest yield. One-pot method to access aryl monofluoromethyl ethers from arylboronic acids and arenes were also under consideration and the yields were objective.
  • 加载中
    1. [1]

      (a) Zhou, Y.; Wang, J.; Gu, Z.; Wang, S.; Zhu, W.; Acena, J. L.; Soloshonok, V. A.; Izawa, K.; Liu, H. Chem. Rev. 2016, 116, 422. (b) Gillis, E. P.; Eastman, K. J.; Hill, M. D.; Donnelly, D. J.; Meanwell, N. A. J. Med. Chem. 2015, 58, 8315. (c) Hagmann, W. K. J. Med. Chem. 2008, 51, 4359. (d) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320. (e) Kirk, K. L. J. Fluorine Chem. 2006, 127, 1013.

    2. [2]

    3. [3]

      (a) Leroux, F.; Jeschke, P.; Schlosser, M. Chem. Rev. 2005, 105, 827. (b) Jeschke, P.; Baston, E.; Leroux, F. R. Mini-Rev. Med. Chem. 2007, 7, 10274. (c) Manteau, B.; Pazenok, S.; Vors, J. P.; Leroux, F. R. J. Fluorine Chem. 2010, 131, 140. (d) Tlili, A.; Toulgoat, F.; Billard, T. Angew. Chem., Int. Ed. 2016, 55, 11726.

    4. [4]

      Wang, C.; Chen, Z.; Wu, W.; Mo, Y. Chem.-Eur. J. 2013, 19, 1436.  doi: 10.1002/chem.201203429

    5. [5]

      Chauret, N.; Guay, D.; Li, C.; Day, S.; Silva, J.; Blouin, M.; Ducharme, Y.; Yergey, J. A.; Nicoli-Griffith, D. A. Bioorg. Med. Chem. Lett. 2002, 12, 2149.  doi: 10.1016/S0960-894X(02)00349-9

    6. [6]

      (a) Shimizu, M.; Hiyama, T. Angew. Chem., Int. Ed. 2005, 44, 214. (b) Manteau, B.; Pazenok, S.; Vors, J. P.; Leroux, F. R. J. Fluorine Chem. 2010, 131, 140.

    7. [7]

      (a) Buzard, D. J.; Schrader T. O.; Zhu, X. W; Juerg, L.; Johnson, B.; Kasem, M.; Kim, S. H.; Kawasaki, A.; Lopez, L.; Moody, J.; Han, S.; Gao, Y. G.; Edwards, J.; Barden, J.; Thatte, J.; Gatlin, J.; Jones, R. M. Bioorg. Med. Chem. Lett. 2015, 25, 659. (b) Naumiec, G. R.; Jenko, K. J.; Zoghbi, S.; Innis, R. B.; Cai, L. S.; Pike, V. W. J. Med. Chem. 2015, 58, 9722.

    8. [8]

      (a) Umemoto, T. Chem. Rev. 1996, 96, 1757. (b) Umemoto, T.; Adachi, K.; Ishihara, S. J. Org. Chem. 2007, 72, 6905. (c) Stanek, K.; Koller, R.; Togni, A. J. Org. Chem. 2008, 73, 7678. (d) Fantasia, S.; Welch, J. M.; Togni, A. J. Org. Chem. 2010, 75, 1779. (e) Koller, R. Angew. Chem., Int. Ed. 2009, 48, 4332. (f) Liang, A.; Han, S. J.; Liu, Z. W.; Wang, L.; Li, J. Y.; Zou, D. P.; Wu, Y. J.; Wu, Y. S. Chem.-Eur. J. 2016, 22, 5102. (g) Brantley, J. N.; Samant, V.; Toste, F. D. ACS Cent. Sci. 2016, 2, 341.

    9. [9]

      (a) Alexander, A. K.; Mikhail, V.; Hartmut, G. Tetrahedron Lett. 2008, 49, 449. (b) Katarzyna, N. L.; Johnny, W. L.; Ngai, M. Y. Tetrahedron 2018, 10, 1016. (c) Hojczyk, N. K.; Feng, P. G.; Zhan, C. B.; Ngai, M. Y. Angew. Chem., Int. Ed. 2014, 53, 14559. (d) Cong F.; Wei Y. L.; Tang P. P. Chem. Commun. 2018, 54, 4473. (e) Zhang, Q. W.; Hartwig, J. F. Chem. Commun. 2018, 54, 10124. (f) Huang, C.; Liang, T.; Harada, S.; Lee, E.; Ritter, T. J. Am. Chem. Soc. 2011, 133, 13308. (g) Zhou, M.; Ni, C. F.; Zeng, Y. W.; Hu, J. B. J. Am. Chem. Soc. 2018, 140, 6801. (h) Sheppard, W. A. J. Org. Chem. 1964, 29, 1. (i) Manabu, K.; Suzuki, K.; Hiyama, T. Tetrahedron Lett. 1992, 33, 4173. (j) Liu, J. B.; Chen, C.; Chu, L. L.; Chen, H. Z.; Xu, X. H.; Qing, F. L. Angew. Chem., Int. Ed. 2015, 54, 11839. (k) Sahoo, B.; Hopkinson, M. N. Angew. Chem. 2018, 130, 8070. (l) Zheng, W. J.; Morales-Rivera, C. A.; Lee, J. W.; Liu, P.; Ngai, M. Y. Angew. Chem., Int. Ed. 2018, 57, 9645. (m) Zheng, W. J.; Morales-Rivera, C. A.; Lee, J. W.; Liu, P.; Ngai, M. Y. Angew. Chem., Int. Ed. 2018, 57, 13795. (n) Li, L. C.; Ni, C. F.; Wang, F.; Hu, J. B. Nat. Conmun. 2015, 137, 14496.

    10. [10]

      (a) Hagooly, Y.; Cohen, O.; Roze, S. Tetrahedron Lett. 2009, 50, 392. (b) Dolbier, W. R.; Wang, F.; Tang, X.; Thomoson, C. S.; Wang, L. J. Fluorine Chem. 2014, 160, 72. (c) Prakash, G. K. S.; Zhang, Z.; Wang, F.; Ni, C.; Olah, G. A. J. Fluorine Chem. 2011, 132, 792. (d) Zhu, J.; Liu, Y.; Shen, Q. Angew. Chem., Int. Ed. 2016, 55, 9050. (e) Ni, C.; Hu, J.; Shen, Q. L. Synthesis 2014, 46, 842. (f) Brahms, D. L. S.; Dailey, W. P. Chem. Rev. 1996, 96, 1585. (g) Jr, W. R. D.; Battiste, M. A. Chem. Rev. 2003, 103, 1071. (h) Fedorynski, M. Chem. Rev. 2003, 103, 1099. (i) Zhang, C. P.; Chen, Q. Y.; Guo, Y.; Xiao, J. C.; Gu, Y. C. Coord. Chem. Rev. 2014, 261, 28.

    11. [11]

      (a) Zhang, W.; Zhu, L. G.; Hu, J. Tetrahedron 2007, 63, 10569. (b) Prakash, G. K. S.; Ledneczki, I.; Chacko, S.; Olah, G. A. Org. Lett. 2008, 10, 557. (c) Nomura, Y.; Tokunaga, E.; Shibata, N. Angew. Chem., Int. Ed. 2011, 50, 1885. (d) Shen, X.; Zhou, M.; Ni, C.; Zhang, W.; Hu, J. B. Chem. Sci. 2014, 5, 117. (e) Liu, Y.; Lu, L.; Shen, Q. L. Angew. Chem., Int. Ed. 2017, 56, 9930.

    12. [12]

      (a) Anderson, K. W.; Ikawa, T.; Tundel, R. E.; Buchwald, S. L. J. Am. Chem. Soc. 2006, 128, 10694. (b) Xia, S. H.; Gan, L.; Wang, K. L.; Li, Z.; Ma, D. W. J. Am. Chem. Soc. 2016, 138, 13493.

    13. [13]

      Fier, P. S.; Hartwig, J. F. Angew. Chem., Int. Ed. 2013, 52, 2092.  doi: 10.1002/anie.201209250

    14. [14]

      Hartwig, J. F. Acc. Chem. Res. 2012, 45, 864.  doi: 10.1021/ar200206a

    15. [15]

      Hartwig, J. F.; Ishiyama, T.; Miyaura, N. J. Am. Chem. Soc. 2002, 124, 390.  doi: 10.1021/ja0173019

    16. [16]

      Anderson, K. W.; Ikawa, T.; Tundel, R. E.; Buchwald, S. L. J. Am. Chem. Soc. 2006, 128, 10694.  doi: 10.1021/ja0639719

  • 加载中
    1. [1]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    2. [2]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    3. [3]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    4. [4]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    5. [5]

      Jiarui Wu Gengxin Wu Yan Wang Yingwei Yang . Crystal Engineering Based on Leaning Towerarenes. University Chemistry, 2024, 39(3): 58-62. doi: 10.3866/PKU.DXHX202304014

    6. [6]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    7. [7]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    8. [8]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    9. [9]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    10. [10]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    11. [11]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    12. [12]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    13. [13]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    14. [14]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    15. [15]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    16. [16]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    17. [17]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    18. [18]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    19. [19]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    20. [20]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

Metrics
  • PDF Downloads(16)
  • Abstract views(812)
  • HTML views(74)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return