Citation: Guo Wenjuan, Yu Jie, Dai Zhao, Hou Weizhao. A New Method for Enriching baicalin in Scutellaria baicalensis Georgi by Metal Organic Framework Material ZIF-8[J]. Acta Chimica Sinica, ;2019, 77(11): 1203-1210. doi: 10.6023/A19080316 shu

A New Method for Enriching baicalin in Scutellaria baicalensis Georgi by Metal Organic Framework Material ZIF-8

  • Corresponding author: Guo Wenjuan, guowenjuan@tjpu.edu.cn
  • Received Date: 29 August 2019
    Available Online: 21 November 2019

Figures(12)

  • This work aims to explore a new method for the efficient enrichment of baicalin in Scutellaria baicalensis Georgi by using metal organic frameworks (MOFs) materials, and to open up new applications for MOFs in the adsorption direction. The zeolitic imidazolate framework-8 (ZIF-8) was synthesized by solvothermal method and characterized by structure to ensure its accurate synthesis. Baicalin was extracted from Scutellaria baicalinsis Georgi by ethanol extraction and acid precipitation method. The ZIF-8 was used to carry out the static adsorption experiment on the crude extract of Radix Scutellariae. After the adsorption equilibrium was reached, the mixture was centrifuged, and the residual concentration of baicalin was detected by high performance liquid chromatography method (HPLC). The recovered saturated adsorbed ZIF-8 material was washed with water and dried, and the phosphate buffered saline (PBS) solution of pH 6.8 was used as a desorption solution, and the desorption was performed by shaking. The content of baicalin in the desorbed solution was determined by HPLC to calculate the desorption rate and achieve the purpose of adsorbent recovery. In the adsorbing process, the effects of adsorbent dosage, pH and adsorbate concentration of the crude extract of Radix Scutellariae were also optimized, and the response surface test (RSM) was performed using Design Expert software to obtain optimal adsorption conditions. Under these conditions, the adsorption rate of ZIF-8 to baicalin in Radix Scutellariae was as high as 98.22%, and the adsorption effect was not significant on other components in Radix Scutellariae. The desorption rate of ZIF-8 adsorbed baicalin in pH 6.8 solution was 62.46%, and the purity of baicalin increased from 21.55% before adsorption to 64.27% after desorption, and ZIF-8 had good stability before and after adsorption, and the recovery rate reached 83.50%. Therefore, ZIF-8 has potential application value in the adsorption and purification of baicalin. The adsorption law and mechanism of ZIF-8 on baicalin were studied:The adsorption of baicalin on ZIF-8 accorded with the quasi-second-order kinetic equation, and the equilibrium adsorption data accorded with the Langmuir adsorption isotherm model.
  • 加载中
    1. [1]

      Farha, O. K.; Hupp, J. T. Acc. Chem. Res. 2010, 43, 1166.  doi: 10.1021/ar1000617

    2. [2]

      Elsaidi, S. K.; Mohamed, M. H.; Banerjee, D.; Thallapally, P. K. Coord. Chem. Rev. 2017, 358, 125.

    3. [3]

      Yang, T.; Cui, Y. N.; Chen, H. Y.; Li, W. H. Acta Chim. Sinica 2017, 75, 339(in Chinese).
       

    4. [4]

      Zhang, H.; Li, G. L.; Zhang, K. G.; Liao, C. Y. Acta Chim. Sinica 2017, 75, 841(in Chinese).
       

    5. [5]

      Cheon, Y. E.; Park, J.; Suh, M. P. Chem. Commun. 2009, 36, 5436.
       

    6. [6]

      Baa, E.; Watkins, G. M.; Krause, R. W.; Tantoh, D. N. Chin. J. Chem. 2019, 37, 387.

    7. [7]

      Pang, C. M.; Luo, S. H.; Hao, Z. F.; Gao, J.; Huang, Z. H.; Yu, J. H.; Yu, S. M.; Wang, Z. Y. Chin. J. Org. Chem. 2018, 38, 2606(in Chinese).
       

    8. [8]

      Tang, Y. Z.; Huang, H. L.; Peng, Y. G.; Ruan, Q. Q.; Wang, K. K.; Yi, P. D.; Liu, D. H.; Zhong, C. L. Chin. J. Chem. 2017, 35, 1091.  doi: 10.1002/cjoc.201600876

    9. [9]

      Wu, Z. M.; Shi, Y.; Li, C. Y.; Niu, D. Y.; Chu, Q.; Xiong, W.; Li, X. Y. Acta Chim. Sinica 2019, 77, 758(in Chinese).
       

    10. [10]

      Guo, X. L.; Chen, X.; Su, D. S.; Liang, C. H. Acta Chim. Sinica 2018, 76, 22(in Chinese).  doi: 10.3866/PKU.WHXB201706302
       

    11. [11]

      Yang, X. P.; Guo, X. X.; Zhang, C. H.; Wang, X. P.; Yang, Y.; Li, Y. W. Acta Chim. Sinica 2017, 75, 360(in Chinese).
       

    12. [12]

      Chouhan, A.; Pilet, G.; Daniele, S.; Pandey, A. Chin. J. Chem. 2017, 35, 209.  doi: 10.1002/cjoc.201600685

    13. [13]

      Zhang, W. Q.; Li, Q. Y.; Yang, X. Y.; Ma, Z.; Wang, H. H.; Wang, X. J. Acta Chim. Sinica 2017, 75, 80(in Chinese).  doi: 10.3866/PKU.WHXB201607293
       

    14. [14]

      Mohamedali, M.; Ibrahim, H.; Henni, A. Chem. Eng. J. 2018, 334, 817.  doi: 10.1016/j.cej.2017.10.104

    15. [15]

      Bian, L.; Li, W.; Wei, Z. Z.; Liu, X. W.; Li, S. Acta Chim. Sinica 2018, 76, 303(in Chinese)  doi: 10.3866/PKU.WHXB201708302
       

    16. [16]

      Massoudinejad, M.; Ghaderpoori, M.; Shahsavani, A.; Amini, M. M. J. Mol. Liq. 2016, 221, 279.  doi: 10.1016/j.molliq.2016.05.087

    17. [17]

      Chen, Z. Y.; Liu, J. W.; Cui, H.; Zhang, L.; Su, C. Y. Acta Chim. Sinica 2019, 77, 242(in Chinese).  doi: 10.3969/j.issn.0253-2409.2019.02.014
       

    18. [18]

      Li, Y.; Zou, B.; Xiao, A. S.; Zhang, H. X. Chin. J. Chem. 2017, 35, 1501.  doi: 10.1002/cjoc.201700151

    19. [19]

      Hasan, Z.; Jhung, S. H. J. Hazard. Mater. 2015, 283, 329.  doi: 10.1016/j.jhazmat.2014.09.046

    20. [20]

      Pi, Y. H.; Li, X. Y.; Xia, Q. B.; Wu, J. L.; Li, Y. W.; Xiao, J.; Li, Z. Chem. Eng. J. 2018, 337, 351.  doi: 10.1016/j.cej.2017.12.092

    21. [21]

      Dai, J.; Xiao, X.; Duan, S. X.; Liu, J.; He, J.; Lei, J. D.; Wang, L. Y. Chem. Eng. J. 2018, 331, 64.  doi: 10.1016/j.cej.2017.08.090

    22. [22]

      Massoudinejad, M.; Ghaderpoori, M.; Shahsavani, A.; Jafari, A.; Kamarehie, B.; Ghaderpoury, A.; Amini, M. M. J. Mol. Liq. 2018, 255, 263.  doi: 10.1016/j.molliq.2018.01.163

    23. [23]

      Li, J.; Wu, Y. N.; Li, Z. H.; Zhang, B. R.; Zhu, M.; Hu, X.; Zhang, Y. M.; Li, F. T. J. Phys. Chem. C 2014, 118, 47.
       

    24. [24]

      Sun, X.; Hu, C. Q.; Huang, X. D.; Dong, J. C. Chin. J. Org. Chem. 2003, 23, 81(in Chinese).
       

    25. [25]

      Chou, T. C.; Chang, L. P.; Li, C. Y.; Wong, C. S.; Yang, S. P. Anesth. Analg. 2003, 97, 1724.  doi: 10.1213/01.ANE.0000087066.71572.3F

    26. [26]

      Dinda, B.; Dinda, S.; DasSharma, S.; Banik, R.; Chakraborty, A.; Dinda, M. Eur. J. Med. Chem. 2017, 131, 68.  doi: 10.1016/j.ejmech.2017.03.004

    27. [27]

      Li-Weber, M. Cancer Treat. Rev. 2009, 35, 57.  doi: 10.1016/j.ctrv.2008.09.005

    28. [28]

      Ikemoto, S.; Sugimura, K.; Yoshida, N.; Yasumoto, R.; Wada, S.; Yamamoto, K.; Kishimoto, T. J. Urol. 2000, 55, 951.  doi: 10.1016/S0090-4295(00)00467-2

    29. [29]

      Wu, J. A.; Attele, A. S.; Zhang, L.; Yuan, C. S. Am. J. Chin. Med. 2001, 29, 69.  doi: 10.1142/S0192415X01000083

    30. [30]

      Liang, W.; Huang, X. B.; Chen, W. Q. Aging Dis. 2017, 8, 850.  doi: 10.14336/AD.2017.0829

    31. [31]

      Mou, X. L.; Zhang, W. P.; Chen, Z. L. J. Appl. Polym. Sci. 2013, 130, 1873.  doi: 10.1002/app.39410

    32. [32]

      Wang, H.; Ma, X. D.; Cheng, Q. B.; Wang, L.; Zhang, L. W. Molecules 2018, 23, 3233.  doi: 10.3390/molecules23123233

    33. [33]

      Srinivas, N. R. Xenobiotica 2010, 40, 357.  doi: 10.3109/00498251003663724

    34. [34]

      Huang, X. C.; Lin, Y. Y.; Zhang, J. P.; Chen, X. M. Angew. Chem., Int. Ed. 2005, 45, 1557.

    35. [35]

      Park, K. S.; Ni, Z.; Cote, A. P.; Choi, J. Y.; Huang, R. D.; Uribe-Romo, F. J.; Chae, H. K.; O'Keeffe, M.; Yaghi, O. M. Proc. Natl. Acad. Sci. 2006, 103, 10186.  doi: 10.1073/pnas.0602439103

    36. [36]

      Yao, J. F.; Wang, H. T. Chem. Soc. Rev. 2014, 43, 4470.  doi: 10.1039/C3CS60480B

    37. [37]

      Phan, A.; Doonan, C. J.; Uribe-Romo, F. J.; Knobler, C. B.; O'Keeffe, M.; Yaghi, O. M. Acc. Chem. Res. 2010, 43, 58.  doi: 10.1021/ar900116g

    38. [38]

      Lai, Z. P. Curr. Opin. Chem. Eng. 2018, 20, 78.  doi: 10.1016/j.coche.2018.03.002

    39. [39]

      Pan, Y. C.; Liu, Y. Y.; Zeng, G. F.; Zhao, L.; Lai, Z. P. Chem. Commun. 2011, 47, 2071.  doi: 10.1039/c0cc05002d

    40. [40]

      The Pharmacopoeia Commission of PRC, The Pharmacopoeia of the People's Republic of China, Part I, Chemical Industry Publishing Press, Beijing, China, 2015, pp. 301~302(in Chinese).

    41. [41]

      Li, W. S.; Chen, X. Chinese Traditional and Herbal Drugs 2000, 31, 107(in Chinese).  doi: 10.3321/j.issn:0253-2670.2000.02.016

    42. [42]

      Dai, Q.; Lei, X. R.; Yang, J. H.; Cheng, Q.; Gao, C.; Li, H. Acta Chim. Sinica 2009, 67, 2363(in Chinese).  doi: 10.3321/j.issn:0251-0790.2009.12.007

    43. [43]

      Ni, Z. M.; Wang, Q. Q.; Yao, P.; Liu, X. M.; Li, Y. Acta Chim. Sinica 2011, 69, 529(in Chinese).
       

    44. [44]

      Fan, C. H.; Zhang, Y. C.; Zhang, Y. Acta Chim. Sinica 2010, 68, 2175(in Chinese).
       

    45. [45]

      Cao, X. Y.; Li, L.; Chen, H. Acta Chim. Sinica 2010, 68, 1461(in Chinese).
       

    46. [46]

      Venna, S. R.; Carreon, M. A. J. Am. Chem. Soc. 2010, 132, 76.  doi: 10.1021/ja909263x

    47. [47]

      Xu, Y. L.; Li, X.; Lin, Y. Q.; Malde, C.; Wang, R. J. Membr. Sci. 2019, 585, 238.  doi: 10.1016/j.memsci.2019.05.042

  • 加载中
    1. [1]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    2. [2]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    3. [3]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    4. [4]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    5. [5]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    6. [6]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    7. [7]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    8. [8]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    9. [9]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    10. [10]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    11. [11]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    12. [12]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    13. [13]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    14. [14]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    15. [15]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    16. [16]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    17. [17]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    18. [18]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    19. [19]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    20. [20]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

Metrics
  • PDF Downloads(13)
  • Abstract views(1803)
  • HTML views(311)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return