Citation: Guo Wenjuan, Yu Jie, Dai Zhao, Hou Weizhao. A New Method for Enriching baicalin in Scutellaria baicalensis Georgi by Metal Organic Framework Material ZIF-8[J]. Acta Chimica Sinica, ;2019, 77(11): 1203-1210. doi: 10.6023/A19080316 shu

A New Method for Enriching baicalin in Scutellaria baicalensis Georgi by Metal Organic Framework Material ZIF-8

  • Corresponding author: Guo Wenjuan, guowenjuan@tjpu.edu.cn
  • Received Date: 29 August 2019
    Available Online: 21 November 2019

Figures(12)

  • This work aims to explore a new method for the efficient enrichment of baicalin in Scutellaria baicalensis Georgi by using metal organic frameworks (MOFs) materials, and to open up new applications for MOFs in the adsorption direction. The zeolitic imidazolate framework-8 (ZIF-8) was synthesized by solvothermal method and characterized by structure to ensure its accurate synthesis. Baicalin was extracted from Scutellaria baicalinsis Georgi by ethanol extraction and acid precipitation method. The ZIF-8 was used to carry out the static adsorption experiment on the crude extract of Radix Scutellariae. After the adsorption equilibrium was reached, the mixture was centrifuged, and the residual concentration of baicalin was detected by high performance liquid chromatography method (HPLC). The recovered saturated adsorbed ZIF-8 material was washed with water and dried, and the phosphate buffered saline (PBS) solution of pH 6.8 was used as a desorption solution, and the desorption was performed by shaking. The content of baicalin in the desorbed solution was determined by HPLC to calculate the desorption rate and achieve the purpose of adsorbent recovery. In the adsorbing process, the effects of adsorbent dosage, pH and adsorbate concentration of the crude extract of Radix Scutellariae were also optimized, and the response surface test (RSM) was performed using Design Expert software to obtain optimal adsorption conditions. Under these conditions, the adsorption rate of ZIF-8 to baicalin in Radix Scutellariae was as high as 98.22%, and the adsorption effect was not significant on other components in Radix Scutellariae. The desorption rate of ZIF-8 adsorbed baicalin in pH 6.8 solution was 62.46%, and the purity of baicalin increased from 21.55% before adsorption to 64.27% after desorption, and ZIF-8 had good stability before and after adsorption, and the recovery rate reached 83.50%. Therefore, ZIF-8 has potential application value in the adsorption and purification of baicalin. The adsorption law and mechanism of ZIF-8 on baicalin were studied:The adsorption of baicalin on ZIF-8 accorded with the quasi-second-order kinetic equation, and the equilibrium adsorption data accorded with the Langmuir adsorption isotherm model.
  • 加载中
    1. [1]

      Farha, O. K.; Hupp, J. T. Acc. Chem. Res. 2010, 43, 1166.  doi: 10.1021/ar1000617

    2. [2]

      Elsaidi, S. K.; Mohamed, M. H.; Banerjee, D.; Thallapally, P. K. Coord. Chem. Rev. 2017, 358, 125.

    3. [3]

      Yang, T.; Cui, Y. N.; Chen, H. Y.; Li, W. H. Acta Chim. Sinica 2017, 75, 339(in Chinese).
       

    4. [4]

      Zhang, H.; Li, G. L.; Zhang, K. G.; Liao, C. Y. Acta Chim. Sinica 2017, 75, 841(in Chinese).
       

    5. [5]

      Cheon, Y. E.; Park, J.; Suh, M. P. Chem. Commun. 2009, 36, 5436.
       

    6. [6]

      Baa, E.; Watkins, G. M.; Krause, R. W.; Tantoh, D. N. Chin. J. Chem. 2019, 37, 387.

    7. [7]

      Pang, C. M.; Luo, S. H.; Hao, Z. F.; Gao, J.; Huang, Z. H.; Yu, J. H.; Yu, S. M.; Wang, Z. Y. Chin. J. Org. Chem. 2018, 38, 2606(in Chinese).
       

    8. [8]

      Tang, Y. Z.; Huang, H. L.; Peng, Y. G.; Ruan, Q. Q.; Wang, K. K.; Yi, P. D.; Liu, D. H.; Zhong, C. L. Chin. J. Chem. 2017, 35, 1091.  doi: 10.1002/cjoc.201600876

    9. [9]

      Wu, Z. M.; Shi, Y.; Li, C. Y.; Niu, D. Y.; Chu, Q.; Xiong, W.; Li, X. Y. Acta Chim. Sinica 2019, 77, 758(in Chinese).
       

    10. [10]

      Guo, X. L.; Chen, X.; Su, D. S.; Liang, C. H. Acta Chim. Sinica 2018, 76, 22(in Chinese).  doi: 10.3866/PKU.WHXB201706302
       

    11. [11]

      Yang, X. P.; Guo, X. X.; Zhang, C. H.; Wang, X. P.; Yang, Y.; Li, Y. W. Acta Chim. Sinica 2017, 75, 360(in Chinese).
       

    12. [12]

      Chouhan, A.; Pilet, G.; Daniele, S.; Pandey, A. Chin. J. Chem. 2017, 35, 209.  doi: 10.1002/cjoc.201600685

    13. [13]

      Zhang, W. Q.; Li, Q. Y.; Yang, X. Y.; Ma, Z.; Wang, H. H.; Wang, X. J. Acta Chim. Sinica 2017, 75, 80(in Chinese).  doi: 10.3866/PKU.WHXB201607293
       

    14. [14]

      Mohamedali, M.; Ibrahim, H.; Henni, A. Chem. Eng. J. 2018, 334, 817.  doi: 10.1016/j.cej.2017.10.104

    15. [15]

      Bian, L.; Li, W.; Wei, Z. Z.; Liu, X. W.; Li, S. Acta Chim. Sinica 2018, 76, 303(in Chinese)  doi: 10.3866/PKU.WHXB201708302
       

    16. [16]

      Massoudinejad, M.; Ghaderpoori, M.; Shahsavani, A.; Amini, M. M. J. Mol. Liq. 2016, 221, 279.  doi: 10.1016/j.molliq.2016.05.087

    17. [17]

      Chen, Z. Y.; Liu, J. W.; Cui, H.; Zhang, L.; Su, C. Y. Acta Chim. Sinica 2019, 77, 242(in Chinese).  doi: 10.3969/j.issn.0253-2409.2019.02.014
       

    18. [18]

      Li, Y.; Zou, B.; Xiao, A. S.; Zhang, H. X. Chin. J. Chem. 2017, 35, 1501.  doi: 10.1002/cjoc.201700151

    19. [19]

      Hasan, Z.; Jhung, S. H. J. Hazard. Mater. 2015, 283, 329.  doi: 10.1016/j.jhazmat.2014.09.046

    20. [20]

      Pi, Y. H.; Li, X. Y.; Xia, Q. B.; Wu, J. L.; Li, Y. W.; Xiao, J.; Li, Z. Chem. Eng. J. 2018, 337, 351.  doi: 10.1016/j.cej.2017.12.092

    21. [21]

      Dai, J.; Xiao, X.; Duan, S. X.; Liu, J.; He, J.; Lei, J. D.; Wang, L. Y. Chem. Eng. J. 2018, 331, 64.  doi: 10.1016/j.cej.2017.08.090

    22. [22]

      Massoudinejad, M.; Ghaderpoori, M.; Shahsavani, A.; Jafari, A.; Kamarehie, B.; Ghaderpoury, A.; Amini, M. M. J. Mol. Liq. 2018, 255, 263.  doi: 10.1016/j.molliq.2018.01.163

    23. [23]

      Li, J.; Wu, Y. N.; Li, Z. H.; Zhang, B. R.; Zhu, M.; Hu, X.; Zhang, Y. M.; Li, F. T. J. Phys. Chem. C 2014, 118, 47.
       

    24. [24]

      Sun, X.; Hu, C. Q.; Huang, X. D.; Dong, J. C. Chin. J. Org. Chem. 2003, 23, 81(in Chinese).
       

    25. [25]

      Chou, T. C.; Chang, L. P.; Li, C. Y.; Wong, C. S.; Yang, S. P. Anesth. Analg. 2003, 97, 1724.  doi: 10.1213/01.ANE.0000087066.71572.3F

    26. [26]

      Dinda, B.; Dinda, S.; DasSharma, S.; Banik, R.; Chakraborty, A.; Dinda, M. Eur. J. Med. Chem. 2017, 131, 68.  doi: 10.1016/j.ejmech.2017.03.004

    27. [27]

      Li-Weber, M. Cancer Treat. Rev. 2009, 35, 57.  doi: 10.1016/j.ctrv.2008.09.005

    28. [28]

      Ikemoto, S.; Sugimura, K.; Yoshida, N.; Yasumoto, R.; Wada, S.; Yamamoto, K.; Kishimoto, T. J. Urol. 2000, 55, 951.  doi: 10.1016/S0090-4295(00)00467-2

    29. [29]

      Wu, J. A.; Attele, A. S.; Zhang, L.; Yuan, C. S. Am. J. Chin. Med. 2001, 29, 69.  doi: 10.1142/S0192415X01000083

    30. [30]

      Liang, W.; Huang, X. B.; Chen, W. Q. Aging Dis. 2017, 8, 850.  doi: 10.14336/AD.2017.0829

    31. [31]

      Mou, X. L.; Zhang, W. P.; Chen, Z. L. J. Appl. Polym. Sci. 2013, 130, 1873.  doi: 10.1002/app.39410

    32. [32]

      Wang, H.; Ma, X. D.; Cheng, Q. B.; Wang, L.; Zhang, L. W. Molecules 2018, 23, 3233.  doi: 10.3390/molecules23123233

    33. [33]

      Srinivas, N. R. Xenobiotica 2010, 40, 357.  doi: 10.3109/00498251003663724

    34. [34]

      Huang, X. C.; Lin, Y. Y.; Zhang, J. P.; Chen, X. M. Angew. Chem., Int. Ed. 2005, 45, 1557.

    35. [35]

      Park, K. S.; Ni, Z.; Cote, A. P.; Choi, J. Y.; Huang, R. D.; Uribe-Romo, F. J.; Chae, H. K.; O'Keeffe, M.; Yaghi, O. M. Proc. Natl. Acad. Sci. 2006, 103, 10186.  doi: 10.1073/pnas.0602439103

    36. [36]

      Yao, J. F.; Wang, H. T. Chem. Soc. Rev. 2014, 43, 4470.  doi: 10.1039/C3CS60480B

    37. [37]

      Phan, A.; Doonan, C. J.; Uribe-Romo, F. J.; Knobler, C. B.; O'Keeffe, M.; Yaghi, O. M. Acc. Chem. Res. 2010, 43, 58.  doi: 10.1021/ar900116g

    38. [38]

      Lai, Z. P. Curr. Opin. Chem. Eng. 2018, 20, 78.  doi: 10.1016/j.coche.2018.03.002

    39. [39]

      Pan, Y. C.; Liu, Y. Y.; Zeng, G. F.; Zhao, L.; Lai, Z. P. Chem. Commun. 2011, 47, 2071.  doi: 10.1039/c0cc05002d

    40. [40]

      The Pharmacopoeia Commission of PRC, The Pharmacopoeia of the People's Republic of China, Part I, Chemical Industry Publishing Press, Beijing, China, 2015, pp. 301~302(in Chinese).

    41. [41]

      Li, W. S.; Chen, X. Chinese Traditional and Herbal Drugs 2000, 31, 107(in Chinese).  doi: 10.3321/j.issn:0253-2670.2000.02.016

    42. [42]

      Dai, Q.; Lei, X. R.; Yang, J. H.; Cheng, Q.; Gao, C.; Li, H. Acta Chim. Sinica 2009, 67, 2363(in Chinese).  doi: 10.3321/j.issn:0251-0790.2009.12.007

    43. [43]

      Ni, Z. M.; Wang, Q. Q.; Yao, P.; Liu, X. M.; Li, Y. Acta Chim. Sinica 2011, 69, 529(in Chinese).
       

    44. [44]

      Fan, C. H.; Zhang, Y. C.; Zhang, Y. Acta Chim. Sinica 2010, 68, 2175(in Chinese).
       

    45. [45]

      Cao, X. Y.; Li, L.; Chen, H. Acta Chim. Sinica 2010, 68, 1461(in Chinese).
       

    46. [46]

      Venna, S. R.; Carreon, M. A. J. Am. Chem. Soc. 2010, 132, 76.  doi: 10.1021/ja909263x

    47. [47]

      Xu, Y. L.; Li, X.; Lin, Y. Q.; Malde, C.; Wang, R. J. Membr. Sci. 2019, 585, 238.  doi: 10.1016/j.memsci.2019.05.042

  • 加载中
    1. [1]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    2. [2]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    3. [3]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    4. [4]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    5. [5]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    6. [6]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    7. [7]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    8. [8]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    9. [9]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    10. [10]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    11. [11]

      Chongjing Liu Yujian Xia Pengjun Zhang Shiqiang Wei Dengfeng Cao Beibei Sheng Yongheng Chu Shuangming Chen Li Song Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036

    12. [12]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    13. [13]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    14. [14]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    15. [15]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    16. [16]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    17. [17]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    18. [18]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    19. [19]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    20. [20]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

Metrics
  • PDF Downloads(13)
  • Abstract views(1918)
  • HTML views(331)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return