Citation: Song Guangjie, Wu Tiaodi, Liu Fuxin, Zhang Binyan, Liu Xiuhui. Electrochemical Detection of Xanthine and Study for the Inhibition of Uric Acid Based on Chitosan/Nitrogen Doped Reduced Graphene Oxide Modified Electrode[J]. Acta Chimica Sinica, ;2020, 78(1): 82-88. doi: 10.6023/A19080313 shu

Electrochemical Detection of Xanthine and Study for the Inhibition of Uric Acid Based on Chitosan/Nitrogen Doped Reduced Graphene Oxide Modified Electrode

  • Corresponding author: Liu Xiuhui, liuxh@nwnu.edu.cn
  • Received Date: 26 August 2019
    Available Online: 6 January 2019

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21565021)the National Natural Science Foundation of China 21565021

Figures(5)

  • Nitrogen doped reduced graphene oxide (N-RGO) was successfully prepared by carbon thermal reduction method, which annealed graphene oxide (GO) and cyanamide at 900℃. The 0.2% acetic acid solution with chitosan (CS) was used as the dispersant of N-RGO to improve the dispersivity, electronic mass transfer rate, and biocompatibility of N-RGO. The morphology, structure and electrochemical properties of N-RGO and CS/N-RGO were investigated by scanning electron microscopy (SEM), fourier transform infrared spectroscopy (FT-IR), and cyclic voltammetry (CV). FT-IR spectrum indicated graphene oxide (GO) was reduced and N-RGO was successfully prepared. The electrochemical experiments demonstrated that CS/N-RGO possesses large electrochemical effective area, strong adsorptive ability and fast electronic mass transfer rate. Then a novel electrochemical sensor for detection of xanthine was fabricated based on CS/N-RGO modified glassy carbon electrode (CS/N-RGO/GCE). It exhibited good electrochemical response toward the oxidation of xanthine with a linear range covering 2.99×10-8~1.07×10-4 mol/L, and the corresponding detection limit (LOD) of 9.96×10-9 mol/L (S/N=3). In addition, the electrochemical behaviors of xanthine on CS/N-RGO/GCE were explored using cyclic voltammetry (CV), which included the pH effect on the oxidation of xanthine and the effect of scan rate on the peak current and peak potential of xanthine. Usually, uric acid in the body is generated by xanthine under the catalysis of xanthine oxidase (XOR), and high concentration of uric acid can cause gout. The inhibition for the formation of uric acid is the most direct method for the treatment of gout. Hence, the inhibition for the formation of uric acid by febuxostat and allopurinol was researched by electrochemical method, manifesting febuxostat and allopurinol can inhibit the activity of xanthine oxidase, which did not make xanthine generating uric acid. Thus, this work is very meaningful in the field of the diagnosis and treatment of gout.
  • 加载中
    1. [1]

      Mohapatra, S.; Kabiraj, P.; Agarwal, T.; Asthana, S.; Annamalai, N.; Arsad, H.; Siddiqui, A. M.; Khursheed, M. H. J. Pharm. Pharm. Sci. 2015, 7, 360.

    2. [2]

      Martinon, F.; Glimcher, L. H. J. Clin. Invest. 2006, 116, 2073.  doi: 10.1172/JCI29404

    3. [3]

      Alam, M. M.; Asiri, A. M.; Uddin, M. T.; Islam, M. A.; Rahman, M. M. RSC Adv. 2018, 8, 12562.  doi: 10.1039/C8RA01734D

    4. [4]

      Wang, Y.; Tong, L. L. Sens. Actuators, B 2010, 150, 43.  doi: 10.1016/j.snb.2010.07.044

    5. [5]

      Mandell, B. F. Clev. Clin. J. Med. 2002, 69, 583.  doi: 10.1097/00000441-200208000-00012

    6. [6]

      Dincer, H. E.; Dincer, A. P.; Levinson, D. J. Clev. Clin. J. Med. 2002, 69, 594.  doi: 10.3949/ccjm.69.8.594

    7. [7]

      Kalimuthu, P.; John, S. A. Talanta 2010, 80, 1686.  doi: 10.1016/j.talanta.2009.10.007

    8. [8]

      Rahman, M. M.; Marwani, H. M.; Algethami, F. K.; Asiri, A. M. New J. Chem. 2017, 41, 6262.  doi: 10.1039/C7NJ00278E

    9. [9]

      Hou, G. J. Contemp. Med. 2015, 21, 114.
       

    10. [10]

      Cooper, N.; Khosravan, R.; Erdmann, C.; Fiene, J.; Lee, J. W. J. Chromatogr. B 2006, 837, 1.  doi: 10.1016/j.jchromb.2006.02.060

    11. [11]

      Richter, T.; Shultz-Lockyear, L. L.; Oleschuk, R. D.; Bilitewski, U.; Harrison, D. J. Sens. Actuators, B 2002, 81, 369.  doi: 10.1016/S0925-4005(01)00963-7

    12. [12]

      Ni, Y. N.; Cao, D. X.; Kokot, S. Anal. Chim. Acta 2007, 588, 131.  doi: 10.1016/j.aca.2007.01.073

    13. [13]

      Reza, O.; Ali, A.; Zahra, A. Sens. Actuators, B 2013, 188, 621.  doi: 10.1016/j.snb.2013.07.015

    14. [14]

      Wang, Z. H.; Yu, J. B.; Gui, R. J.; Jin, H.; Xia, Y. Z. Biosens. Bioelectron. 2016, 79, 136.  doi: 10.1016/j.bios.2015.11.093

    15. [15]

      Li, S. M.; Yang, S. Y.; Wang, Y. S.; Lien, C. H.; Tien, H. W.; Hsiao, S. T.; Liao, W. H.; Tsai, H. P.; Chang, C. L.; Ma, C. C.; Hu, C. C. Carbon 2013, 59, 418.  doi: 10.1016/j.carbon.2013.03.035

    16. [16]

      Guo, H. L.; Su, P.; Kang, X. F.; Ning, S. K. J. Mater. Chem. A 2013, 1, 2248.  doi: 10.1039/C2TA00887D

    17. [17]

      Usachov, D.; Vilkov, O.; Gruneis, A.; Haberer, D.; Fedorov, A.; Adamchuk, V. K.; Preobrajenski, A. B.; Dudin, P.; Barinov, A.; Oehzelt, M.; Laubschat, C.; Vyalikh, D. V. Nano Lett. 2011, 11, 5401.  doi: 10.1021/nl2031037

    18. [18]

      Zhang, Y.; Zhu, J. Y.; Ren, H. B.; Bi, Y. T.; Zhang, L. Chin. J. Chem. 2017, 35, 1069.  doi: 10.1002/cjoc.201600854

    19. [19]

      Kong, D. Q.; Bi, S.; Wang, Z. H.; Xia, J. F.; Zimney, E. J.; Zhang, F. F. Anal. Chem. 2016, 88, 10667.  doi: 10.1021/acs.analchem.6b03112

    20. [20]

      Kumar, M. N.; Muzzarelli, R. A.; Muzzarelli, C.; Sashiwa, H.; Domb, A. J. Chem. Rev. 2004, 104, 6017.  doi: 10.1021/cr030441b

    21. [21]

      Yang, X. M.; Tu, Y. F.; Li, L.; Shang, S. M.; Tao, X. M. ACS Appl. Mater. Inter. 2010, 2, 1707.  doi: 10.1021/am100222m

    22. [22]

      Liu, Y. G.; Li, W. M.; Wei, C. B.; Lv, L. L. Chin. J. Chem. 2012, 30, 1601.  doi: 10.1002/cjoc.201100477

    23. [23]

      Sharma, N.; Sharma, V.; Jain, Y.; Kumari, M.; Gupta, R.; Sharma, S. K.; Sachdev, K. Macromol. Symp. 2017, 376, 1700006.  doi: 10.1002/masy.201700006

    24. [24]

      Guo, H. L.; Wang, X. F.; Qian, Q. Y.; Wang, F. B.; Xia, X. H. ACS Nano 2009, 3, 2653.  doi: 10.1021/nn900227d

    25. [25]

      Gao, H. C.; Xiao, F.; Ching, C. B.; Duan, H. W. ACS Appl. Mater. Inter. 2011, 3, 3049.  doi: 10.1021/am200563f

    26. [26]

      Wu, P.; Qian, Y. D.; Du, P.; Zhang, H.; Cai, C. X. J. Mater. Chem. 2012, 22, 6402.  doi: 10.1039/c2jm16929k

    27. [27]

      Li, S. J.; He, J. Z.; Zhang, M. J.; Zhang, Q. R.; Lv, X. L. Electrochim. Acta 2013, 102, 58.  doi: 10.1016/j.electacta.2013.03.176

    28. [28]

      Laviron, E. Electroanal. Chem. Inter. Electrochem. 1974, 52, 355.  doi: 10.1016/S0022-0728(74)80448-1

    29. [29]

      Li, Y. C.; Feng, S. Q.; Li, S. X.; Zhang, Y. Y.; Zhong, Y. M. Sens. Actuators, B 2014, 190, 999.  doi: 10.1016/j.snb.2013.09.052

    30. [30]

      Li, J. H.; Kuang, D. Z.; Feng, Y. L.; Zhang, F. X.; Xu, Z. F.; Liu, M. Q.; Wang, D. P. Biosens. Bioelectron. 2013, 42, 198.  doi: 10.1016/j.bios.2012.10.029

    31. [31]

      Wen, Y. P.; Chang, J.; Xu, L. J.; Liao, X. N.; Bai, L.; Lan, Y. D.; Li, M. F. J. Electroanal. Chem. 2017, 805, 159.  doi: 10.1016/j.jelechem.2017.09.053

    32. [32]

      Steel, A. B.; Herne, T. M.; Tarlov, M. J. Anal. Chem. 1998, 70, 4670.  doi: 10.1021/ac980037q

    33. [33]

      Dincer, H. E.; Dincer, A. P.; Levinson, D. J. Clev. Clin. J. Med. 2002, 69, 594.  doi: 10.3949/ccjm.69.8.594

    34. [34]

      Mandell, B. F. Clev. Clin. J. Med. 2002, 69, 583.

    35. [35]

      Maiuolo, J.; Oppedisano, F.; Gratteri, S.; Muscoli, C.; Mollace, V. Int. J. Cardiol. 2016, 213, 8.  doi: 10.1016/j.ijcard.2015.08.109

    36. [36]

      Wilson, L.; Saseen, J. J. Pharmacotherapy 2016, 36, 906.  doi: 10.1002/phar.1788

    37. [37]

      Okamoto, K.; Eger, B. T.; Nishino, T.; Kondo, S.; Pai, E. F.; Nishino, T. J. Biol. Chem. 2003, 278, 48.  doi: 10.1074/jbc.M206025200

    38. [38]

      Takano, Y.; Hase, K.; Horiuchi, H. Life Sci. 2005, 76, 35.

    39. [39]

      Schumacher, H. R. Expert Opin. Invest. Drugs 2005, 14, 893.  doi: 10.1517/13543784.14.7.893

  • 加载中
    1. [1]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    2. [2]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    3. [3]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    4. [4]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    5. [5]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    6. [6]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    7. [7]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    8. [8]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    9. [9]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    10. [10]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    11. [11]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    12. [12]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    13. [13]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    14. [14]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    15. [15]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    16. [16]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    17. [17]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    18. [18]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    19. [19]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    20. [20]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

Metrics
  • PDF Downloads(12)
  • Abstract views(816)
  • HTML views(108)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return