Citation: Zhang Shuo, Hou Zitong, Song Zihe, Su Xiaofeng, Wang Feng, Yu Yitao, Peng Dan, Cui Shiqi, Liu Yifan, Wang Jiarui, Song Jianjun. Zn/Ni Bimetallic Relay Catalysis: One Pot Intramolecular Cycloisomerization/Intermolecular Amidoalkylation Reaction toward Oxazole Derivatives[J]. Acta Chimica Sinica, ;2019, 77(11): 1168-1172. doi: 10.6023/A19080303 shu

Zn/Ni Bimetallic Relay Catalysis: One Pot Intramolecular Cycloisomerization/Intermolecular Amidoalkylation Reaction toward Oxazole Derivatives

  • Corresponding author: Peng Dan, lonarpeng@aliyun.com Song Jianjun, songjianjun@qlu.edu.cn
  • Received Date: 16 August 2019
    Available Online: 14 November 2019

    Fund Project: Project supported by the Shandong Provincial Natural Science Foundation (No. ZR2017BB033), the Youth Science Funds of Shandong Academy of Sciences (No. 2018QN0030) and the National Natural Science Foundation of China (No. 51503118)the Shandong Provincial Natural Science Foundation ZR2017BB033the Youth Science Funds of Shandong Academy of Sciences 2018QN0030the National Natural Science Foundation of China 51503118

Figures(2)

  • Oxazole derivatives are widely found in natural products and pharmaceuticals with impressive biological properties, tremendous efforts have been devoted to the development of new methodologies and strategies to construct the oxazole rings. However, most of these reactions require harsh reaction conditions, limiting the wide application of these classical oxazole synthetic methods in organic synthesis. N-Acyliminium ions represent important electron deficient carbocations intermediates in organic synthesis because they provide various biologically important natural and unnatural products via C-C and C-heteroatom bondforming methodologies using an inter-or intramolecular path. The removal of a good leaving group at the α-position of amides or lactams usually generates N-acyliminium ions, which act as more electron-deficient carbocations toward nucleophiles. In this paper, a novel tandem metal relay catalytic system of Zn/Ni has been successfully developed. By using this unprecedented Zn(OTf)2/Ni(ClO4)2·6H2O bimetallic relay catalytic system, a variety of oxazole derivatives were obtained from easily available N-(propargyl)-arylamides and various γ-hydroxy lactams through intramolecular cycloisomerization/intermolecular amidoalkylation under mild conditions. The first step of the one-pot procedure is that Zn(OTf)2 acts as a π acid to activate the triple bond of N-(propargyl)-arylamides, and a subsequent intramolecular 5-exo-dig cyclization forms the oxazoline intermediate. Separately, Ni(ClO4)2·6H2O acts as Lewis acid to activate and facilitate the departure of 3-hydroxyl group to form the electrophilic acyliminium ions, which then in an intermolecular reaction is transformed to the oxazole derivatives in good to excellent yield. Control experiments in the optimization section disclose the fact that Zn(OTf)2 and Ni(ClO4)2·6H2O are both indispensable for this intramolecular cycloisomerization/intermolecular amidoalkylation reaction. Generally, the synthetic reactions run under air atmosphere by heating all the substrates and reagents in one-pot at 100℃. The N-(propargyl)-arylamide containing different types of electron-donating substituents, different electron-rich aromatic rings and different electron-withdrawing substituents can react with 3-hydroxy-2-benzyl-isoindolin-1-one to give the corresponding oxazole derivatives. In contrast, the propargyl amide containing an electron withdrawing group has a lower yield than the one using other propargyl amide, because the activity of the oxazoline intermediate obtained by the propargyl amide containing an electron withdrawing group is lower. 3-Hydroxy-2-phenylisoindoline-1-one, 3-hydroxy-2-phenylmethylisoindoline-1-one and 3-hydroxy-2-phenylethylisoindoline-1-one have also been found applicable to this reaction. The present method benefits from the distinctive features of simple reaction conditions, high atom economy and broad substrate tolerance. It is of great significance for the synthesis of oxazole derivatives and the formation of acyliminium ions.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

    4. [4]

    5. [5]

    6. [6]

    7. [7]

    8. [8]

    9. [9]

    10. [10]

    11. [11]

    12. [12]

    13. [13]

      Othman, R. B.; Affani, R.; Tranchant, M. J.; Antoniotti, S.; Dalla, V.; Dunach, E. Angew. Chem. Int. Ed. 2010, 49, 776.  doi: 10.1002/anie.200906036

    14. [14]

      Dutta, M.; Mandal, S. M.; Pegu, R.; Pratihar, S. J. Org. Chem. 2017, 82, 2193.  doi: 10.1021/acs.joc.6b02378

    15. [15]

  • 加载中
    1. [1]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    2. [2]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    3. [3]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    4. [4]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    5. [5]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    6. [6]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    7. [7]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    8. [8]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    9. [9]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    10. [10]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    11. [11]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    12. [12]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    13. [13]

      Hong Zheng Xin Peng Chunwang Yi . The Tale of Caprolactam Cyclic Oligomers: The Ever-changing Life of “Princess Cyclo”. University Chemistry, 2024, 39(9): 40-47. doi: 10.12461/PKU.DXHX202403058

    14. [14]

      Hongsheng Tang Yonghe Zhang Dexiang Wang Xiaohui Ning Tianlong Zhang Yan Li Hua Li . A Wonderful Journey through the Kingdom of Hazardous Chemicals. University Chemistry, 2024, 39(9): 196-202. doi: 10.12461/PKU.DXHX202403098

    15. [15]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    16. [16]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    17. [17]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    18. [18]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    19. [19]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    20. [20]

      Yuanyi Lu Jun Zhao Hongshuang Li . Silver-Catalyzed Ring-Opening Minisci Reaction: Developing a Teaching Experiment Suitable for Undergraduates. University Chemistry, 2024, 39(11): 225-231. doi: 10.3866/PKU.DXHX202401088

Metrics
  • PDF Downloads(7)
  • Abstract views(1064)
  • HTML views(208)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return