Citation: Jin Jiaoyu, Yan Xiaoxuan, Liu Yaping, Lan Wenxian, Wang Chunxi, Xu Bin, Cao Chunyang. Recent Advances in the Structural Studies on Cytosine Deaminase APOBEC3 Family Members and Their Nucleic Acid Complexes[J]. Acta Chimica Sinica, ;2019, 77(11): 1089-1098. doi: 10.6023/A19080296 shu

Recent Advances in the Structural Studies on Cytosine Deaminase APOBEC3 Family Members and Their Nucleic Acid Complexes

Figures(10)

  • Apolipoprotein B mRNA catalytically edited protein APOBEC3 (A3) is a family of proteins in the intracellular retrotransposon defense system, including seven members APOBEC3A (A3A), APOBEC3B (A3B), APOBEC3C (A3C), APOBEC3DE (A3DE), APOBEC3F (A3F), APOBEC3G (A3G) and APOBEC3H (A3H) encoded in a tandem array on human chromosome 22. They deaminate cytosine in single-stranded DNA and RNA substrates, which play a variety of roles in human health and disease. Among them, A3DE, A3F, A3G and A3H restrict replication of human immunodeficiency virus-1 (HIV-1) in strains lacking the virus infectivity factor protein (Vif) by deaminating cytidine in virus cDNA. Subsequent replication of the virus cDNA generates the hallmark G-to-A hyper-mutations, causing proviral inactivation. HIV-1 develops countermeasures to antagonize this intrinsic host defense response. Its Vif protein facilitates polyubiquitination of A3 members by recruiting an E3 ubiquitin ligase complex, which results in the proteasomal degradation of A3 proteins. To better understand the deamination mechanism of A3 proteins, we here reviewed the research progress on the structures of free A3 family members and their complexes with single-stranded DNA or double-stranded RNA. It includes the structures of the apo-forms of N- and/or C-termini domains of A3A, A3B, A3C, A3F, A3G and A3H, or the chimeric forms of their functional domains, and their complexes with nucleic acids, which demonstrate the basis of how A3 proteins to identify target base cytosine in hot motifs 5'-TC or 5'-CC in DNA, and then to conduct catalytic deamination. We simply described how the key residues of A3 members are involved in DNA or RNA interactions, the common properties of their structures, and their interactions with DNA or RNA. We partially discussed the interactions between A3 proteins and Vif, therefore, this review might be helpful to rationally design anti-virus drugs to disrupt these interactions. We finally suggested the new research directions about how to make full-length A3 proteins containing N-terminal CD1 and C-terminal CD2 domains, and how to study the interactions between these full-length A3 proteins and nucleic acids through cryo-EM and other techniques.
  • 加载中
    1. [1]

      Goila-Gaur, R.; Strebel, K. Retrovirology 2008, 5, 51.  doi: 10.1186/1742-4690-5-51

    2. [2]

      Larue, R. S.; Andresdottir, V.; Blanchard, Y.; Conticello, S. G.; Derse, D.; Emerman, M.; Greene, W. C.; Jonsson, S. R.; Landau, N. R.; Lochelt, M.; Malik, H. S.; Malim, M. H.; Munk, C.; O'Brien, S. J.; Pathak, V. K.; Strebel, K.; Wain-Hobson, S.; Yu, X. F.; Yuhki, N.; Harris, R. S. J. Virol. 2009, 83, 494.  doi: 10.1128/JVI.01976-08

    3. [3]

      Wedekind, J. E. Trends Genet. 2003, 19, 207.  doi: 10.1016/S0168-9525(03)00054-4

    4. [4]

      Harris, R. S.; Liddament, M. T. Nat. Rev. Immunol. 2004, 4, 868.  doi: 10.1038/nri1489

    5. [5]

      Kitamura, S.; Ode, H.; Nakashima, M. Nat. Struct. Mol. Biol. 2012, 19, 1005.  doi: 10.1038/nsmb.2378

    6. [6]

      Mitra, M.; Hercik, K.; Byeon, I. J. L. Nucleic Acids Res. 2014, 42, 1095.  doi: 10.1093/nar/gkt945

    7. [7]

      Chen, K. M.; Harjes, E.; Gross, P. J.; Fahmy, A.; Lu, Y.; Shindo, K. Seibutsu Butsuri 2008, 48, 116.
       

    8. [8]

      Burns, M. B.; Lackey, L.; Carpenter, M. A.; Rathore, A.; Land, A. M.; Leonard, B. Nature 2013, 494, 366.  doi: 10.1038/nature11881

    9. [9]

      Shi, K.; Carpenter, M. A.; Kurahashi, K.; Harris, R. S.; Aihara, H. J. Biol. Chem. 2015, 290, 28120.  doi: 10.1074/jbc.M115.679951

    10. [10]

      Xiao, X.; Yang, H.; Arutiunian, V.; Fang, Y.; Chen, X. S. Nucleic Acids Res. 2017, 45, 7494.  doi: 10.1093/nar/gkx362

    11. [11]

      Nathans, R.; Cao, H.; Sharova, N.; Ali, A.; Sharkey, M.; Stranska, R. Nat. Biotechnol. 2008, 26, 1187.  doi: 10.1038/nbt.1496

    12. [12]

      Dang, Y.; Wang, X.; Esselman, W. J.; Zheng, Y. H. J. Virol. 2006, 80, 10522.  doi: 10.1128/JVI.01123-06

    13. [13]

      Stanley, B. J.; Ehrlich, E. S.; Short, L.; Yu, Y.; Xiong, Y. J. Virol. 2008, 82, 8656.  doi: 10.1128/JVI.00767-08

    14. [14]

      Seplyarskiy, V. B.; Andrianova, M. A.; Bazykin, G. A. Genome Res. 2017, 27, 175.  doi: 10.1101/gr.210336.116

    15. [15]

      Zheng, Y. H.; Irwin, D.; Kurosu, T. J. Virol. 2004, 78, 6073.  doi: 10.1128/JVI.78.11.6073-6076.2004

    16. [16]

      Byeon, I. J. L.; Ahn, J.; Mitra, M.; Byeon, C. H.; Hercík, K.; Hritz, J. Nat. Commun. 2013, 4, 1890.  doi: 10.1038/ncomms2883

    17. [17]

      Chelico, L.; Prochnow, C.; Erie, D. A. J. Biol. Chem. 2010, 283, 16195.
       

    18. [18]

      Guo, Y.; Dong, L.; Qiu, X.; Wang, Y.; Zhang, B.; Liu, H. Nature 2014, 505(7482), 229.  doi: 10.1038/nature12884

    19. [19]

      Bohn, M. F. Structure 2013, 21, 1042.  doi: 10.1016/j.str.2013.04.010

    20. [20]

      Siu, K. K.; Sultana, A.; Azimi, F. Nat. Commun. 2013, 4, 2593.  doi: 10.1038/ncomms3593

    21. [21]

      Matsui, M.; Shindo, K.; Izumi, T.; Io, K.; Shinohara, M.; Komano, J.; Kobayashi, M.; Kadowaki, N.; Harris, R. S.; Takaori-Kondo, A. Virol. J. 2014, 11, 122.  doi: 10.1186/1743-422X-11-122

    22. [22]

      Kouno, T.; Luengas, E. M.; Shigematsu, M. Nat. Struct. Mol. Biol. 2015, 22(6), 485.  doi: 10.1038/nsmb.3033

    23. [23]

      Klarmann, G. J. J. Biol. Chem. 2003, 278, 7902.  doi: 10.1074/jbc.M207223200

    24. [24]

      Furukawa, A.; Nagata, T.; Matsugami, A. Nucleic Acids Symp. Ser. 2009, 53, 87.  doi: 10.1093/nass/nrp044

    25. [25]

      Mangeat, B.; Turelli, P.; Caron, G.; Friedli, M.; Perrin, L.; Trono, D. Nature 2003, 4244, 99.

    26. [26]

      Peng, G. J. Exp. Med. 2006, 203, 41.  doi: 10.1084/jem.20051512

    27. [27]

      Chelico, L.; Pham, P.; Calabrese, P.; Goodman, M. F. Nat. Struct. Mol. Biol. 2006, 13, 392  doi: 10.1038/nsmb1086

    28. [28]

      Harjes, E.; Gross, P. J.; Chen, K. M.; Lu, Y.; Shindo, K. J. Mol. Biol. 2009, 389, 819.  doi: 10.1016/j.jmb.2009.04.031

    29. [29]

      Wichroski, M. J.; K. Ichiyama; T. M. Rana. J. Biol. Chem. 2005, 280, 8387.
       

    30. [30]

      Sheehy, A. M.; Gaddis, N. C.; Choi, J. D.; Malim, M. H. Nature 2002, 418, 646.  doi: 10.1038/nature00939

    31. [31]

      Bennett, R. P.; Presnyak, V.; Wedekind, J. E.; Smith, H. C. J. Biol. Chem. 2008, 283, 7320.  doi: 10.1074/jbc.M708567200

    32. [32]

      Lu, X.; Zhang, T. L.; Xu, Z. J. Biol. Chem. 2015, 290, 4010.  doi: 10.1074/jbc.M114.624262

    33. [33]

      Dang, Y.; Siew, L. M.; Wang, X. J.; Han, Y. X.; Lampen, R.; Zheng, Y. H. J. Biol. Chem. 2008, 283, 11606.  doi: 10.1074/jbc.M707586200

    34. [34]

      Jarmuz, A.; Chester, A.; Bayliss, J.; Gisbourne, J.; Dunham, I.; Scott, J. Genomics 2002, 79, 285.  doi: 10.1006/geno.2002.6718

    35. [35]

      Holden, L. G.; Prochnow, C.; Chang, Y. P. Nature 2008, 456, 121.  doi: 10.1038/nature07357

    36. [36]

      Olson, M. E.; Li, M.; Harris, R. S. Chem. Med. Chem. 2013, 8, 112.  doi: 10.1002/cmdc.201200411

    37. [37]

      Jager, S.; Kim, D. Y.; Hultquist, J. F.; Shindo, K.; Larue, R. S.; Kwon, E. Nature 2012, 481, 371.  doi: 10.1038/nature10693

    38. [38]

      Mehle, A.; Strack, B.; Ancuta, P.; Zhang, C.; Mcpike, M.; Gabuzda, D. J. Biol. Chem. 2004, 279, 7792.  doi: 10.1074/jbc.M313093200

    39. [39]

      Marcsisin, S. R.; Engen, J. R. J. Mol. Biol. 2010, 402, 892.  doi: 10.1016/j.jmb.2010.08.026

    40. [40]

      Bergeron, J. R.; Huthoff, H.; Veselkov, D. A.; Beavil, R. L.; Sanderson, M. R. PLoS Pathog. 2010, 6, e1000925.  doi: 10.1371/journal.ppat.1000925

    41. [41]

      Reingewertz, T. H.; Shalev, D. E.; Friedler, A. Protein Pept. Lett. 2010, 17, 988.  doi: 10.2174/092986610791498876

    42. [42]

      Liddament, M. T.; Brown, W. L.; Schumacher, A. J.; Harris, R. S. Curr. Biol. 2004, 14, 1385.  doi: 10.1016/j.cub.2004.06.050

    43. [43]

      Lu, Z.; Bergeron, J. R. C.; AtkinsLu, Z.; Bergeron, J. R. C.; Atkinson, R. A.; Schaller, T.; Veselkov, D. A.; Oregioni, A. Open. Biol. 2013, 3, 130100.  doi: 10.1098/rsob.130100

    44. [44]

      Luo, K.; Xiao, Z.; Ehrlich, E.; Yu, Y.; Liu, B.; Zheng, S. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 11444.  doi: 10.1073/pnas.0502440102

    45. [45]

      Stenglein, M. D.; Burns, M. B.; Li, M.; Lengyel, J.; Harris, R. S. Nat. Struct. Mol. Biol. 2010, 17, 222.  doi: 10.1038/nsmb.1744

    46. [46]

      Chelico, L.; Pham, P.; Calabrese, P.; Goodman, M. F. Nat. Struct. Mol. Biol. 2006, 13, 392.  doi: 10.1038/nsmb1086

    47. [47]

      Ronsard, L.; Raja, R.; Panwar, V.; Saini, S.; Mohankumar, K.; Sridharan, S. Sci. Rep. 2015, 5, 15438.  doi: 10.1038/srep15438

    48. [48]

      Yamanaka, S.; Balestra, M. E.; Ferrell, L. D. Proc. Nat. Acad. Sci. U. S. A. 1995, 92, 8483.  doi: 10.1073/pnas.92.18.8483

    49. [49]

      Navarro, F.; Bollman, B.; Chen, H. Virology 2005, 333, 374.  doi: 10.1016/j.virol.2005.01.011

    50. [50]

      Kouno, T.; Silvas, T. V.; Hilbert, B. J.; Shandilya, S. M. D.; Bohn, M. F.; Kelch, B. A.; Royer, W. E.; Somasundaran, M.; Kurt Yilmaz, N.; Matsuo, H.; Schiffer, C. A. Nat. Commun. 2017, 8, 15024.  doi: 10.1038/ncomms15024

    51. [51]

      Shi, K.; Carpenter, M. A.; Banerjee, S.; Shaban, N. M.; Kurahashi, K.; Salamango, D. J.; McCann, J. L.; Starrett, G. J.; Duffy, J. V.; Demir, O.; Amaro, R. E.; Harki, D. A.; Harris, R. S.; Aihara, H. Nat. Struct Mol. Biol. 2017, 24, 131.  doi: 10.1038/nsmb.3344

    52. [52]

      Fang, Y.; Xiao, X.; Li, S.; Wolfe, A.; Chen, X. S. J. Mol. Biol. 2018, 430, 87.  doi: 10.1016/j.jmb.2017.11.007

    53. [53]

      Cheng, C.; Zhang, T.; Wang, C. X.; Lan, W.; Ding, J.; Cao, C. Y. Chin. J. Chem. 2018, 36, 1241.  doi: 10.1002/cjoc.201800508

    54. [54]

      Xiao, X.; Li, S. X.; Yang, H.; Chen, X. S. Nat. Commun. 2016, 7, 12193.  doi: 10.1038/ncomms12193

    55. [55]

      Maiti, A.; Myint, W.; Kanai, T.; Delviks-Frankenberry, K.; Sierra Rodriguez, C.; Pathak, V. K.; Schiffer, C. A.; Matsuo, H. Nat. Commun. 2018, 9, 2460.  doi: 10.1038/s41467-018-04872-8

    56. [56]

      Yan, X. X.; Lan, W. X.; Wang, C. X.; Cao, C. Y. Chem. Asian J. 2019, 14, 2235.  doi: 10.1002/asia.201900480

    57. [57]

      Bohn, J. A.; Thummar, K.; York, A.; Raymond, A.; Brown, W. C.; Bieniasz, P. D.; Hatziioannou, T.; Smith, J. L. Nat. Commun. 2017, 8, 1021.  doi: 10.1038/s41467-017-01309-6

    58. [58]

      Nadine, M. S.; Shi, K.; Lauer, K. V.; Brown, W. L.; Aihara, H.; Harris, R. S. Mol. Cell 2018, 69, 75.  doi: 10.1016/j.molcel.2017.12.010

    59. [59]

      Matsuoka, T.; Nagae, T.; Ode, H.; Awazu, H.; Kurosawa, T.; Hamano, A.; Matsuoka, K.; Hachiya, A.; Imahashi, M.; Yokomaku, Y.; Watanabe, N.; Iwatani, Y. Nucleic Acids Res. 2018, 46, 10368.  doi: 10.1093/nar/gky676

  • 加载中
    1. [1]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    2. [2]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    3. [3]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    4. [4]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    5. [5]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    6. [6]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    7. [7]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    8. [8]

      Bairu MengZongji ZhuoHan YuSining TaoZixuan ChenErik De ClercqChristophe PannecouqueDongwei KangPeng ZhanXinyong Liu . Design, synthesis, and biological evaluation of benzo[4,5]thieno[2,3-d]pyrimidine derivatives as novel HIV-1 NNRTIs. Chinese Chemical Letters, 2024, 35(6): 108827-. doi: 10.1016/j.cclet.2023.108827

    9. [9]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    10. [10]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    11. [11]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    12. [12]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    13. [13]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    14. [14]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    15. [15]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    16. [16]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    17. [17]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    18. [18]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    19. [19]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    20. [20]

      Gregorio F. Ortiz . Some facets of the Mg/Na3VCr0.5Fe0.5(PO4)3 battery. Chinese Chemical Letters, 2024, 35(10): 109391-. doi: 10.1016/j.cclet.2023.109391

Metrics
  • PDF Downloads(27)
  • Abstract views(1801)
  • HTML views(433)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return