Citation: Shi Lei, Pang Hongwei, Wang Xiangxue, Zhang Pan, Yu Shujun. Study on the Migration and Transformation Mechanism of Graphene Oxide in Aqueous Solutions[J]. Acta Chimica Sinica, ;2019, 77(11): 1177-1183. doi: 10.6023/A19070276 shu

Study on the Migration and Transformation Mechanism of Graphene Oxide in Aqueous Solutions

  • Corresponding author: Yu Shujun, sjyu@ncepu.edu.cn
  • Received Date: 26 July 2019
    Available Online: 24 November 2019

Figures(5)

  • Graphene oxide (GO) is widely used in energy chemical, environmental restoration, nanomaterials, liquid phase catalysis, etc. due to its excellent physical and chemical properties. At the same time, GO is inevitably discharged into nature during the application process, and the toxicity released into the environment may lead to instability of the biological system. Therefore, this paper systematically studied several common cations (Na+, K+, Ca2+, Mg2+), anions (PO43-, SO42-, CO32-, HCO3-, Cl-) and clay minerals (montmorillonite, kaolin, bentonite, nano-alumina) on GO coagulation at different concentrations. And FTIR is used to characterize the clay minerals before and after the precipitation of GO. The experimental results show that the cations have strong GO coagulation ability, and the coagulation ability of different valence cations has a large difference. After analysis, the electrical properties of GO in aqueous solution are negative, the cation acts as a counter ion, and the coagulation behavior conforms to the Schulze-Hardy rule. The main reason for the difference in coagulation ability between isovalent cations is electronegativity and ionic hydration. The anion acts to increase the stability of GO, and the coagulation ability of the cation is more effective than the stabilization ability of the anion. The ability of sodium salts with the same valence anion to coagulate GO also differs, mainly because the hydrolysis of HCO3- and CO32- causes a decrease in the negative charges, resulting in a decrease in the ability to stabilize GO. The clay minerals contain hydroxyl and metal-oxygen bonds that interact with GO. According to the maximum removal rate, the clay minerals have the coagulation ability:nano-alumina > kaolin > bentonite > montmorillonite. The main influencing factors are the electrical properties of clay minerals in aqueous solution. This paper is helpful to understand the coagulation behavior of GO in different water environments, and it is of great significance for the future application of graphene engineering in pollution control.
  • 加载中
    1. [1]

      Loh, K. P.; Bao, Q. L.; Ang, P. K.; Yang, J. X. J. Mater. Chem. 2010, 20, 2277.  doi: 10.1039/b920539j

    2. [2]

      Dreyer, D. R.; Park, S. J.; Bielawski, C. W.; Ruoff, R. S. Chem. Soc. Rev. 2010, 39, 228.  doi: 10.1039/B917103G

    3. [3]

      Chen, D.; Feng, H.; Li, J. Chem. Rev. 2012, 112, 6027.  doi: 10.1021/cr300115g

    4. [4]

      Stoller, M. D.; Park, S. J.; Zhu, Y. W.; An, j.; Ruoff, R. S. Nano Lett. 2008, 8, 3498.  doi: 10.1021/nl802558y

    5. [5]

      Zhao, K. L.; Hao, Y.; Zhu, M.; Cheng, G. S. Acta Chim. Sinica. 2018, 76, 168(in Chinese).  doi: 10.3866/PKU.WHXB201707111
       

    6. [6]

      Zhang, S. W.; Zhang, J.; Wu, S. D.; lv, W.; Kang, F. Y.; Yang, Q. H. Acta. Chim. Sinica. 2017, 75, 163(in Chinese).  doi: 10.11862/CJIC.2017.023
       

    7. [7]

      Zhong, G. Y.; Wang, H. J.; Yu, H.; Peng, F. Acta Chim. Sinica. 2017, 75, 943(in Chinese).
       

    8. [8]

      Wang, X.; Li, Y. B.; Du, L. Y.; Gao, F. J.; Wu, Q.; Yang, L. J.; Chen, Q.; Wang, X. J.; Hu, Z. Acta Chim. Sinica. 2018, 76, 627(in Chinese).  doi: 10.11862/CJIC.2018.081
       

    9. [9]

      Lu, J. H.; Tan, S. Z.; Zhu, Y. Q.; Li, W.; Chen, T. X.; Wang, Y.; Liu, C. Acta Chim. Sinica. 2019, 77, 253(in Chinese).
       

    10. [10]

      Ma, W. H.; Chang, Y. Z.; Han, G. Y.; Xiao, Y. M.; Fu, D. Y.; Chang, Y. H.; Chinese J. Chem. 2017, 35, 1844.  doi: 10.1002/cjoc.201700398

    11. [11]

      Yang, X. L.; Cai, H. Y.; Bao, M. Y.; Yu, J. Q.; Lu, J. R.; Li, Y. M. Chinese J. Chem. 2017, 35, 1549.  doi: 10.1002/cjoc.201700202

    12. [12]

      Li, M. Y.; Liu, R. Q.; Han, G. Y.; Tian, Y. N.; Chang, Y. Z.; Xiao, Y. M. Chinese J. Chem. 2017, 35, 1405.  doi: 10.1002/cjoc.201700061

    13. [13]

      Song, C. Y.; Sun, X.; Ye, K.; Zhu, K.; Cheng, H.; Yan, J.; Cao, D. X.; Wang, G. L. Acta. Chim. Sinica. 2017, 75, 1003(in Chinese).
       

    14. [14]

      Liao, K. H.; Lin, Y. S.; Macosko, C. W.; Haynes, C. L. ACS Appl. Mater. Interfaces 2011, 3, 2607.  doi: 10.1021/am200428v

    15. [15]

      Gao, Y.; Chen, K.; Ren, X. M.; Ahmed, A.; Tasawar, H.; Chen, C. L. Environ. Sci. Technol. 2018, 52, 12208.  doi: 10.1021/acs.est.8b02234

    16. [16]

      Gao, Y; Wu, J. C.; Ren, X. M.; Tan X. L.; Tasawar, H.; Ahmed, A.; Cheng, C.; Chen, C. L. Environ. Sci.:Nano 2017, 4, 1016.  doi: 10.1039/C7EN00052A

    17. [17]

      Gao, Y.; Ren, X. M.; Wu, J. C.; Tasawar, H.; Ahmed, A.; Cheng, C.; Chen, C. l. Environ. Sci.:Nano 2018, 5, 362.  doi: 10.1039/C7EN01012E

    18. [18]

      Wang, J.; Yao, W.; Gu, P. C.; Yu, S. J.; Wang, X. X.; Du, Y.; Wang, H. Q.; Chen, Z. S.; Hayat, T.; Wang, X. K. Cellulose 2016, 24, 85.

    19. [19]

      Vallabani, N. V. S.; Mittal, S.; Shukla, R. K.; Pandey, A. K.; Dhakate, S. R.; Pasricha, R.; Dhawan, A. J. Biomed. Nanotechnol. 2011, 7, 106.  doi: 10.1166/jbn.2011.1224

    20. [20]

      Akhavan, O.; Ghaderi, E. ACS Nano 2010, 4, 5731.  doi: 10.1021/nn101390x

    21. [21]

      Hu, J.; Zhang, C. X.; Jiang, L.; Fang, S. D.; Zhang, X. D.; Wang, X. K.; Meng, Y. D. J. Power Sources 2014, 248, 831.  doi: 10.1016/j.jpowsour.2013.09.099

    22. [22]

      Zaghouane-Boudiaf, H.; Boutahala, M.; Arab, L. Chem. Eng. J. 2012, 187, 142.  doi: 10.1016/j.cej.2012.01.112

    23. [23]

      Wang, J.; Wang, X. X.; Tan, L. Q.; Chen, Y. T.; Hayat, T.; Hu, J.; Alsaedi, A.; Ahmad, B.; Guo, W.; Wang, X. K. Chem. Eng. J. 2016, 297, 106.  doi: 10.1016/j.cej.2016.04.012

    24. [24]

      Meunier, N.; Drogui, P.; Montane, C.; Hausler, R.; Mercier, G.; Blais, J. F. J. Hazard. Mater. 2006, 137, 581.  doi: 10.1016/j.jhazmat.2006.02.050

    25. [25]

      Qiang, S. R.; Wang, M. Y.; Liang, J. J.; Zhao, X. L.; Fan, Q. H.; Geng, R. Y.; Luo, D. X.; Li, Z. B.; Zhang, L. Mater. Chem. Phys. 2020, 239, 122016.  doi: 10.1016/j.matchemphys.2019.122016

    26. [26]

      Yang, K. J.; Chen, B. L.; Zhu, X. Y.; Xing, B. S. Environ. Sci. Technol. 2016, 50, 11066.  doi: 10.1021/acs.est.6b04235

    27. [27]

      Chowdhury, I.; Mansukhani, N. D.; Guiney, L. M.; Hersam, M. C.; Bouchard, D. Environ. Sci. Technol. 2015, 49, 10886.  doi: 10.1021/acs.est.5b01866

    28. [28]

      Zeng, Z. Y.; Wang, Y. L.; Zhou, Q. B.; Yang, K.; Lin, D. H. Environ. Pollut. 2019, 250, 366.  doi: 10.1016/j.envpol.2019.03.112

    29. [29]

      Zhao, J.; Liu, F. F.; Wang, Z. Y.; Cao, X. S.; Xing, B. S. Environ. Sci. Technol. 2015, 49:2849.  doi: 10.1021/es505605w

    30. [30]

      Liang, J. J.; Li, P.; Zhao, X. L.; Liu, Z. Y.; Fan, Q. H.; Li, Z.; Wang, D. Q. Nanoscale 2018, 3, 1383.

    31. [31]

      Park, C. M.; Chu, K. H.; Heo, J.; Her, N.; Jang, M.; Son, A.; Yoon, Y. J. Hazard. Mater. 2016, 309, 133.  doi: 10.1016/j.jhazmat.2016.02.006

    32. [32]

      Li, N.; Ma, J. Z.; Bao, Y. Chem. Res. 2009, 20, 98(in Chinese).
       

    33. [33]

      Huang, G. X.; Guo, H. Y.; Zhao, J.; Liu, Y. H.; Xing, B. S. Water Res. 2012, 102, 313.

    34. [34]

      Anirudhan, T. S.; Ramachandran, M. Proc. Saf. Environ. Prot. 2015, 95, 215.  doi: 10.1016/j.psep.2015.03.003

    35. [35]

      Chowdhury, I.; Duch, M. C.; Mansukhani, N. D.; Hersam, M. C.; Bouchard, D. Environ. Sci. Technol. 2013, 47, 6288.  doi: 10.1021/es400483k

    36. [36]

      Wu, L.; Liu, L.; Gao, B.; Muñoz-Carpena, R.; Zhang, M.; Chen, H.; Zhou, Z. H.; Wang, H. Langmuir 2013, 29, 15174.  doi: 10.1021/la404134x

    37. [37]

      Ma, J. C.; Dougherty, D. A. Chem. Rev. 1997, 97, 1303.  doi: 10.1021/cr9603744

    38. [38]

      Trivedi, P.; Axe, L.; Dyer, J. Colloids Surf. A 2001, 191, 107.  doi: 10.1016/S0927-7757(01)00768-3

    39. [39]

      Raza, G.; Amjad, M.; Kaur, I.; Wen, D. Environ. Sci. Technol. 2016, 50, 8462.  doi: 10.1021/acs.est.5b05746

    40. [40]

      Volkov, A. G.; Paula, D. W.; Dreamer, D. W. Bioelectrochem. Bioenerg. 1997, 42, 153.  doi: 10.1016/S0302-4598(96)05097-0

    41. [41]

      Tansel, B.; Sager, J.; Rector, T.; Garland, J.; Strayer, R. F.; Levine, L. F.; Roberts, M.; Hummerick, M.; Bauer, J. Sep. Purif. Technol. 2006, 51, 40.  doi: 10.1016/j.seppur.2005.12.020

    42. [42]

      Abdelmeguid, A. E.; Aboelfetoh, E. F.; Ebeid, E. M. Chemosphere 2017, 181, 738.  doi: 10.1016/j.chemosphere.2017.04.137

    43. [43]

      Tahir, S. S.; Rauf, N. Chemosphere 2006, 63, 1842.  doi: 10.1016/j.chemosphere.2005.10.033

    44. [44]

      Hummers, W. S.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80, 1339.  doi: 10.1021/ja01539a017

  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    3. [3]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    4. [4]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    5. [5]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    6. [6]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    7. [7]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    8. [8]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    9. [9]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    10. [10]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    11. [11]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    12. [12]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    13. [13]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    14. [14]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    15. [15]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    16. [16]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    17. [17]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    18. [18]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    19. [19]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    20. [20]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

Metrics
  • PDF Downloads(49)
  • Abstract views(1297)
  • HTML views(208)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return