Citation: Meng Shuangyan, Wang Mingming, Lü Bolin, Xue Qunji, Yang Zhiwang. Preparation of Eu-Doped ZnO/MIL-53(Fe) Photocatalyst and Its Catalytic Performance for Selective Oxidation of Alcohols[J]. Acta Chimica Sinica, ;2019, 77(11): 1184-1193. doi: 10.6023/A19070268 shu

Preparation of Eu-Doped ZnO/MIL-53(Fe) Photocatalyst and Its Catalytic Performance for Selective Oxidation of Alcohols

  • Corresponding author: Xue Qunji,  Yang Zhiwang, yangzw@nwnu.edu.cn
  • Received Date: 18 July 2019
    Available Online: 26 November 2019

Figures(10)

  • The novel 3 dimension (3D) nanocomposite photocatalyst Eu-ZnO/MIL-53(Fe) was successfully prepared with in situ synthesis. Firstly the rare earth element Eu was doped into semiconductor ZnO and then Eu-ZnO was combined with MIL-53(Fe). The structure, morphology, optical and electrical properties of the nanocomposites were thoroughly characterized by X-ray diffraction (XRD), fourier infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), ultraviolet-visible diffuse reflectance spectroscopy (UV-vis DRS), X-ray photoelectron spectroscopy (XPS), N2 adsorption-desorption isotherms (SBET), photoluminescence spectra (PL) and electrochemical impedance (EIS) spectra and the like. The FT-IR and XRD results showed that the photocatalysts were successfully prepared and SEM results showed that morphology of the MIL-53(Fe) were all well remained after the preparing process. The photocatalytic experiment data, UV-Vis DRS spectra and PL spectra and the like results showed that the introduction of rare earth elements Eu could greatly improve the photocatalytic efficiency of MIL-53 (Fe), and promote the effective separation of photogenerated electron-hole, which further improved the catalytic activity. The results of electrochemical impedance spectra further supported the conclusion. By exploring the photocatalytic activity of Eu-ZnO/MIL-53(Fe) under visible light conditions, the photocatalyst showed excellent photocatalytic activity. Some derivatives of benzalcohol were more affected by electronic effects, the conversion of the derivative having an electron-withdrawing group was relatively high, and the conversion of the derivative having an electron-donating group was low. The possible mechanism of the photocatalytic reaction was explored via the active species capture experiment and Mott-schottky (M-S) curve test. The results showed that the photocatalytic selective oxidation of alcohols achieved with photogenerated holes (h+) and hydroxyl radicals (·OH). The photo stability and thermal stability of the photocatalyst was investigated by cyclic experiments and the structure characterization of the photocatalyst before and after the photoreaction. The results showed that the photocatalyst had outstanding light stability and thermal stability.
  • 加载中
    1. [1]

      James, B. Chem. Soc. Rev. 2009, 38, 185.  doi: 10.1039/B802262N

    2. [2]

      Wasielewski, M. R. Chem. Rev. 1992, 92, 435.  doi: 10.1021/cr00011a005

    3. [3]

      Bard, A. J.; Fox, M. A. Acc. Chem. Res. 1995, 28, 141.  doi: 10.1021/ar00051a007

    4. [4]

      Ravelli, D.; Dondi, D.; Fagnoni, M.; Albini, A. Chem. Soc. Rev. 2009, 38, 1999.  doi: 10.1039/b714786b

    5. [5]

      Gust, D.; Moore, T. A.; Moore, A. L. Acc. Chem. Res. 2009, 42, 1890.  doi: 10.1021/ar900209b

    6. [6]

      Berardi, S.; Drouet, S.; Francas, L.; Gimbert-Surinach, C.; Guttentag, M.; Richmond, C.; Stoll, T.; Llobet, A. Chem. Soc. Rev. 2014, 43, 7501.  doi: 10.1039/C3CS60405E

    7. [7]

      Zeng, L.; Guo, X. Y.; He, C.; Duan, C. Y. ACS Catal. 2016, 6, 7935.  doi: 10.1021/acscatal.6b02228

    8. [8]

      Yaghi, O. M.; Li, G. M.; Li, H. M. Nature 1995, 378, 703.  doi: 10.1038/378703a0

    9. [9]

      Moulton, B.; Zaworotko, M. J. Chem. Rev. 2001, 101, 1629.  doi: 10.1021/cr9900432

    10. [10]

      Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F. Acc. Chem. Res. 2005, 38, 217.  doi: 10.1021/ar040163i

    11. [11]

      Hill, R. J.; Long, D. L.; Champness, N. R.; Hubberstey, P.; Schr der, M. Acc. Chem. Res. 2005, 38, 335.  doi: 10.1021/ar040174b

    12. [12]

      Proch, S.; Herrmannsd rfer, J.; Kempe, R.; Kern, C.; Jess, A.; Seyfarth, L.; Senker, J. Chem.-Eur. J. 2008, 14, 8204.  doi: 10.1002/chem.200801043

    13. [13]

      López-Maya, E.; Montoro, C.; Colombo, V.; Barea, E.; Navarro, J. A. R. Adv. Funct. Mater. 2014, 24, 6130.  doi: 10.1002/adfm.201400795

    14. [14]

      Meng, S. Y.; Yang, H. J.; Zhu, N.; Yang, J.; Yang, R. R.; Yang, Z. W. Acta Chim. Sinica 2019, 77, 461(in Chinese).
       

    15. [15]

      Liu, R. X.; He, X. Y.; Niu, L. T.; Lü, B. L.; Yu, F.; Zhang, Z.; Yang, Z. W. Acta Chim. Sinica 2019, 77, 653(in Chinese).
       

    16. [16]

      Zhao, M.; Ou, S.; Wu, C. D. Acc. Chem. Res. 2014, 45, 1199.
       

    17. [17]

      Wu, P. Y.; Wang, J.; Li, Y. M.; He, C.; Xie, Z.; Duan, C. Y. Adv. Funct. Mater. 2011, 21, 2788.  doi: 10.1002/adfm.201100115

    18. [18]

      Ma, Y. L.; Liu, R. X.; Meng, S. Y.; Niu, L. T.; Yang, Z. W. Acta. Chim. Sinica 2019, 77, 153. 

    19. [19]

      Horcajada, P.; Gref, R.; Baati, T.; Allan, P.; Maurin, G.; Couvreur, P.; Ferey, G.; Morris, R.; Serre, C. Chem. Rev. 2012, 112, 1232.  doi: 10.1021/cr200256v

    20. [20]

      Sun, D. R.; Li, Z. H. Chin. J. Chem. 2017, 35, 135.  doi: 10.1002/cjoc.201600647

    21. [21]

      Shen, L. J.; Liang, R. W.; Wu, L. Chin. J. Catal. 2015, 36, 2071.  doi: 10.1016/S1872-2067(15)60984-6

    22. [22]

      Zhang, W. Q.; Li, Q. Y.; Yang, X. Y.; Ma, Z.; Wang, H. H.; Wang, X. J. Acta Chim. Sinica 2017, 75, 80.  doi: 10.3866/PKU.WHXB201607293
       

    23. [23]

      Liang, R. W.; Shen, L. J.; Jing, F. F.; Qin, N.; Wu, L. ACS Appl. Mater. Interfaces 2015, 7, 9507.  doi: 10.1021/acsami.5b00682

    24. [24]

      Liang, R. W.; Chen, R.; Jing, F. F.; Qin, N.; Wu, L. Dalton Trans. 2015, 44, 18227.  doi: 10.1039/C5DT02986D

    25. [25]

      Liang, R. W.; Huang, R.; Ying, S. M.; Wang, X. X.; Yan, G. Y.; Wu, L. Nano Res. 2017, 11, 1109.

    26. [26]

      Liang, R.; Jing, F. F.; Shen, L. J.; Qin, N.; Wu, L. Nano Res. 2015, 8, 3237.  doi: 10.1007/s12274-015-0824-9

    27. [27]

      Jing, F. F.; Liang, R. W.; Xiong, J. H.; Chen, R.; Zhang, S. Y.; Li, Y. H.; Wu, L. Appl. Catal. B:Environ. 2017, 206, 9.  doi: 10.1016/j.apcatb.2016.12.070

    28. [28]

      Liang, R. W.; Jing, F. F.; Yan, G. Y.; Wu, L. Appl. Catal. B:Environ. 2017, 218, 452.  doi: 10.1016/j.apcatb.2017.06.075

    29. [29]

      Liang, R. W.; Shen, L. J.; Jing, F. F.; Wu, W. M.; Qin, N.; Lin, R.; Wu, L. Appl. Catal. B:Environ. 2015, 162, 245.  doi: 10.1016/j.apcatb.2014.06.049

    30. [30]

      Araya, T.; Jia, M.; Yang, J.; Zhao, P.; Cai, K.; Ma, W. H.; Huang, Y. P. Appl. Catal. B:Environ. 2017, 203, 768.  doi: 10.1016/j.apcatb.2016.10.072

    31. [31]

      Liu, Q. X.; Zeng, C. M.; Ai, L. H.; Hao, Z.; Jiang, J. Appl. Catal. B:Environ. 2018, 224, 38.  doi: 10.1016/j.apcatb.2017.10.029

    32. [32]

      Huang, W. Y.; Liu, N.; Zhang, X. G.; Wu, M. H.; Tang, L. Appl. Surf. Sci. 2017, 425, 107.  doi: 10.1016/j.apsusc.2017.07.050

    33. [33]

      Yang, Z. W.; Xu, X. Q.; Liang, X. X.; Lei, C.; Wei, Y. L.; He, P. Q.; Lv, B. L.; Ma, H. C.; Lei, Z. Q. Appl. Catal. B:Environ. 2016, 198, 112.  doi: 10.1016/j.apcatb.2016.05.041

    34. [34]

      Ernández-Carrilloa, M. A.; Torres-Ricárdeza, H. R.; García-Mendozaa, M. F.; Ramírez-Moralesa, E.; Rojas-Blancoa, L.; Díaz-Floresa, L. L.; Sepúlveda-Palaciosb, G. E.; Paraguay-Delgadoc, F.; Pérez-Hernándeza, G. Catal. Today 2018, doi: org/10.1016/j.cattod.2018.04.060

    35. [35]

      Meng, J. C.; Chen, Q.; Lu, J. Q.; Liu, H. ACS Appl. Mater. Interfaces 2019, 11, 550.  doi: 10.1021/acsami.8b14282

    36. [36]

      Gao, B. J.; Zhou, J.; Wang, H. L.; Zhang, G. P.; He, J. H.; Xu, Q. F.; Li, N. J.; Chen, D. Y.; Li, H.; Lu, J. M. Chin. J. Catal. 2019, 37, 148.

    37. [37]

      Lucovsky, G.; Phillips, J. C. Thin Solid Films 2005, 486, 200.  doi: 10.1016/j.tsf.2004.11.224

    38. [38]

      Frindell, K. L.; Bartl, M. H.; Matthew, R.; Bazan, G. C.; Popitsch, A.; Stucky, G. D. J. Solid State Chem. 2003, 172, 81.  doi: 10.1016/S0022-4596(02)00126-3

    39. [39]

      Carreno, N. V.; Fajardo, H. V.; Maciel, A. P.; Valentini, A.; Pontes, F. M.; Probst, L. F. D.; Leite, E. R.; Longo, E. J. Mol. Catal. A:Chem. 2004, 207, 91.  doi: 10.1016/S1381-1169(03)00496-5

    40. [40]

      Wang, D. K.; Huang, R. K.; Liu, W. J.; Sun, D. R.; Li, Z. H. ACS Catal. 2014, 4, 4254.  doi: 10.1021/cs501169t

    41. [41]

      Sin, J. C.; Lam, S. M.; Lee, K. T.; Mohamed, A. R. Ceram. Int. 2014, 40, 5431.  doi: 10.1016/j.ceramint.2013.10.128

    42. [42]

      Gao, Y. W.; Li, S. M.; Li, Y. X.; Yao, L. Y.; Zhang, H. Appl. Catal. B:Environ. 2017, 202, 165.  doi: 10.1016/j.apcatb.2016.09.005

    43. [43]

      Jian, X.; Liu, X.; Yang, H. M.; Li, J. G.; Song, X. L.; Dai, H. Y.; Liang, Z. H. Appl. Surf. Sci. 2016, 370, 514.  doi: 10.1016/j.apsusc.2016.02.119

    44. [44]

      Huang, X.; Tan, C. L.; Yin, Z. Y.; Zhang, H. Adv. Mater. 2014, 26, 2185.  doi: 10.1002/adma.201304964

    45. [45]

      Yu, J. G.; Yu, X. X. Environ. Sci. Technol. 2008, 42, 4902.  doi: 10.1021/es800036n

    46. [46]

      Zhang, C. H.; Ai, L. H.; Jiang, J. Ind. Eng. Chem. Res. 2015, 54, 153.  doi: 10.1021/ie504111y

    47. [47]

      Liang, R. W.; Jing, F. F.; Shen, L. J.; Qin, N.; Wu, L. J. Hazard. Mater. 2015, 287, 364.  doi: 10.1016/j.jhazmat.2015.01.048

    48. [48]

      Khataee, A. R.; Karimi, A.; Darvishi, R.; Soltani, C.; Safarpour, M.; Hanifehpour, Y.; Joo, S. W. Appl. Catal. A:Gen. 2014, 488, 160.  doi: 10.1016/j.apcata.2014.09.039

    49. [49]

      Zhao, F.; Sun, H. L.; Gao, S.; Su, G. Mater. Chem. 2005, 15, 4209.  doi: 10.1039/b507584j

    50. [50]

      Xu, X. Q.; Liu, R. X.; Cui, Y.; Liang, X.; Lei, C.; Meng, S. Y.; Ma, Y. L.; Lei, Z. Q.; Yang, Z. W. Appl. Catal. B:Environ. 2017, 210, 484.  doi: 10.1016/j.apcatb.2017.04.021

    51. [51]

      Sun, L. P.; Niu, S. Y.; Jin, J.; Yang, G.; Ye, L. Inorg. Chem. Commun. 2006, 9, 679.  doi: 10.1016/j.inoche.2006.03.027

    52. [52]

      Jin, X.; Ye, L.; Wang, H.; Su, Y.; Xie, H.; Zhong, Z.; Zhang, H. Appl. Catal. B:Environ. 2015, 165, 668.  doi: 10.1016/j.apcatb.2014.10.075

  • 加载中
    1. [1]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    2. [2]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    3. [3]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    4. [4]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    5. [5]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    6. [6]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    7. [7]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    8. [8]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    9. [9]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    10. [10]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    11. [11]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    12. [12]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    13. [13]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    14. [14]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    15. [15]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    16. [16]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    17. [17]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    18. [18]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    19. [19]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    20. [20]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

Metrics
  • PDF Downloads(8)
  • Abstract views(1084)
  • HTML views(168)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return