Citation: Meng Shuangyan, Wang Mingming, Lü Bolin, Xue Qunji, Yang Zhiwang. Preparation of Eu-Doped ZnO/MIL-53(Fe) Photocatalyst and Its Catalytic Performance for Selective Oxidation of Alcohols[J]. Acta Chimica Sinica, ;2019, 77(11): 1184-1193. doi: 10.6023/A19070268 shu

Preparation of Eu-Doped ZnO/MIL-53(Fe) Photocatalyst and Its Catalytic Performance for Selective Oxidation of Alcohols

  • Corresponding author: Xue Qunji,  Yang Zhiwang, yangzw@nwnu.edu.cn
  • Received Date: 18 July 2019
    Available Online: 26 November 2019

Figures(10)

  • The novel 3 dimension (3D) nanocomposite photocatalyst Eu-ZnO/MIL-53(Fe) was successfully prepared with in situ synthesis. Firstly the rare earth element Eu was doped into semiconductor ZnO and then Eu-ZnO was combined with MIL-53(Fe). The structure, morphology, optical and electrical properties of the nanocomposites were thoroughly characterized by X-ray diffraction (XRD), fourier infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), ultraviolet-visible diffuse reflectance spectroscopy (UV-vis DRS), X-ray photoelectron spectroscopy (XPS), N2 adsorption-desorption isotherms (SBET), photoluminescence spectra (PL) and electrochemical impedance (EIS) spectra and the like. The FT-IR and XRD results showed that the photocatalysts were successfully prepared and SEM results showed that morphology of the MIL-53(Fe) were all well remained after the preparing process. The photocatalytic experiment data, UV-Vis DRS spectra and PL spectra and the like results showed that the introduction of rare earth elements Eu could greatly improve the photocatalytic efficiency of MIL-53 (Fe), and promote the effective separation of photogenerated electron-hole, which further improved the catalytic activity. The results of electrochemical impedance spectra further supported the conclusion. By exploring the photocatalytic activity of Eu-ZnO/MIL-53(Fe) under visible light conditions, the photocatalyst showed excellent photocatalytic activity. Some derivatives of benzalcohol were more affected by electronic effects, the conversion of the derivative having an electron-withdrawing group was relatively high, and the conversion of the derivative having an electron-donating group was low. The possible mechanism of the photocatalytic reaction was explored via the active species capture experiment and Mott-schottky (M-S) curve test. The results showed that the photocatalytic selective oxidation of alcohols achieved with photogenerated holes (h+) and hydroxyl radicals (·OH). The photo stability and thermal stability of the photocatalyst was investigated by cyclic experiments and the structure characterization of the photocatalyst before and after the photoreaction. The results showed that the photocatalyst had outstanding light stability and thermal stability.
  • 加载中
    1. [1]

      James, B. Chem. Soc. Rev. 2009, 38, 185.  doi: 10.1039/B802262N

    2. [2]

      Wasielewski, M. R. Chem. Rev. 1992, 92, 435.  doi: 10.1021/cr00011a005

    3. [3]

      Bard, A. J.; Fox, M. A. Acc. Chem. Res. 1995, 28, 141.  doi: 10.1021/ar00051a007

    4. [4]

      Ravelli, D.; Dondi, D.; Fagnoni, M.; Albini, A. Chem. Soc. Rev. 2009, 38, 1999.  doi: 10.1039/b714786b

    5. [5]

      Gust, D.; Moore, T. A.; Moore, A. L. Acc. Chem. Res. 2009, 42, 1890.  doi: 10.1021/ar900209b

    6. [6]

      Berardi, S.; Drouet, S.; Francas, L.; Gimbert-Surinach, C.; Guttentag, M.; Richmond, C.; Stoll, T.; Llobet, A. Chem. Soc. Rev. 2014, 43, 7501.  doi: 10.1039/C3CS60405E

    7. [7]

      Zeng, L.; Guo, X. Y.; He, C.; Duan, C. Y. ACS Catal. 2016, 6, 7935.  doi: 10.1021/acscatal.6b02228

    8. [8]

      Yaghi, O. M.; Li, G. M.; Li, H. M. Nature 1995, 378, 703.  doi: 10.1038/378703a0

    9. [9]

      Moulton, B.; Zaworotko, M. J. Chem. Rev. 2001, 101, 1629.  doi: 10.1021/cr9900432

    10. [10]

      Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F. Acc. Chem. Res. 2005, 38, 217.  doi: 10.1021/ar040163i

    11. [11]

      Hill, R. J.; Long, D. L.; Champness, N. R.; Hubberstey, P.; Schr der, M. Acc. Chem. Res. 2005, 38, 335.  doi: 10.1021/ar040174b

    12. [12]

      Proch, S.; Herrmannsd rfer, J.; Kempe, R.; Kern, C.; Jess, A.; Seyfarth, L.; Senker, J. Chem.-Eur. J. 2008, 14, 8204.  doi: 10.1002/chem.200801043

    13. [13]

      López-Maya, E.; Montoro, C.; Colombo, V.; Barea, E.; Navarro, J. A. R. Adv. Funct. Mater. 2014, 24, 6130.  doi: 10.1002/adfm.201400795

    14. [14]

      Meng, S. Y.; Yang, H. J.; Zhu, N.; Yang, J.; Yang, R. R.; Yang, Z. W. Acta Chim. Sinica 2019, 77, 461(in Chinese).
       

    15. [15]

      Liu, R. X.; He, X. Y.; Niu, L. T.; Lü, B. L.; Yu, F.; Zhang, Z.; Yang, Z. W. Acta Chim. Sinica 2019, 77, 653(in Chinese).
       

    16. [16]

      Zhao, M.; Ou, S.; Wu, C. D. Acc. Chem. Res. 2014, 45, 1199.
       

    17. [17]

      Wu, P. Y.; Wang, J.; Li, Y. M.; He, C.; Xie, Z.; Duan, C. Y. Adv. Funct. Mater. 2011, 21, 2788.  doi: 10.1002/adfm.201100115

    18. [18]

      Ma, Y. L.; Liu, R. X.; Meng, S. Y.; Niu, L. T.; Yang, Z. W. Acta. Chim. Sinica 2019, 77, 153. 

    19. [19]

      Horcajada, P.; Gref, R.; Baati, T.; Allan, P.; Maurin, G.; Couvreur, P.; Ferey, G.; Morris, R.; Serre, C. Chem. Rev. 2012, 112, 1232.  doi: 10.1021/cr200256v

    20. [20]

      Sun, D. R.; Li, Z. H. Chin. J. Chem. 2017, 35, 135.  doi: 10.1002/cjoc.201600647

    21. [21]

      Shen, L. J.; Liang, R. W.; Wu, L. Chin. J. Catal. 2015, 36, 2071.  doi: 10.1016/S1872-2067(15)60984-6

    22. [22]

      Zhang, W. Q.; Li, Q. Y.; Yang, X. Y.; Ma, Z.; Wang, H. H.; Wang, X. J. Acta Chim. Sinica 2017, 75, 80.  doi: 10.3866/PKU.WHXB201607293
       

    23. [23]

      Liang, R. W.; Shen, L. J.; Jing, F. F.; Qin, N.; Wu, L. ACS Appl. Mater. Interfaces 2015, 7, 9507.  doi: 10.1021/acsami.5b00682

    24. [24]

      Liang, R. W.; Chen, R.; Jing, F. F.; Qin, N.; Wu, L. Dalton Trans. 2015, 44, 18227.  doi: 10.1039/C5DT02986D

    25. [25]

      Liang, R. W.; Huang, R.; Ying, S. M.; Wang, X. X.; Yan, G. Y.; Wu, L. Nano Res. 2017, 11, 1109.

    26. [26]

      Liang, R.; Jing, F. F.; Shen, L. J.; Qin, N.; Wu, L. Nano Res. 2015, 8, 3237.  doi: 10.1007/s12274-015-0824-9

    27. [27]

      Jing, F. F.; Liang, R. W.; Xiong, J. H.; Chen, R.; Zhang, S. Y.; Li, Y. H.; Wu, L. Appl. Catal. B:Environ. 2017, 206, 9.  doi: 10.1016/j.apcatb.2016.12.070

    28. [28]

      Liang, R. W.; Jing, F. F.; Yan, G. Y.; Wu, L. Appl. Catal. B:Environ. 2017, 218, 452.  doi: 10.1016/j.apcatb.2017.06.075

    29. [29]

      Liang, R. W.; Shen, L. J.; Jing, F. F.; Wu, W. M.; Qin, N.; Lin, R.; Wu, L. Appl. Catal. B:Environ. 2015, 162, 245.  doi: 10.1016/j.apcatb.2014.06.049

    30. [30]

      Araya, T.; Jia, M.; Yang, J.; Zhao, P.; Cai, K.; Ma, W. H.; Huang, Y. P. Appl. Catal. B:Environ. 2017, 203, 768.  doi: 10.1016/j.apcatb.2016.10.072

    31. [31]

      Liu, Q. X.; Zeng, C. M.; Ai, L. H.; Hao, Z.; Jiang, J. Appl. Catal. B:Environ. 2018, 224, 38.  doi: 10.1016/j.apcatb.2017.10.029

    32. [32]

      Huang, W. Y.; Liu, N.; Zhang, X. G.; Wu, M. H.; Tang, L. Appl. Surf. Sci. 2017, 425, 107.  doi: 10.1016/j.apsusc.2017.07.050

    33. [33]

      Yang, Z. W.; Xu, X. Q.; Liang, X. X.; Lei, C.; Wei, Y. L.; He, P. Q.; Lv, B. L.; Ma, H. C.; Lei, Z. Q. Appl. Catal. B:Environ. 2016, 198, 112.  doi: 10.1016/j.apcatb.2016.05.041

    34. [34]

      Ernández-Carrilloa, M. A.; Torres-Ricárdeza, H. R.; García-Mendozaa, M. F.; Ramírez-Moralesa, E.; Rojas-Blancoa, L.; Díaz-Floresa, L. L.; Sepúlveda-Palaciosb, G. E.; Paraguay-Delgadoc, F.; Pérez-Hernándeza, G. Catal. Today 2018, doi: org/10.1016/j.cattod.2018.04.060

    35. [35]

      Meng, J. C.; Chen, Q.; Lu, J. Q.; Liu, H. ACS Appl. Mater. Interfaces 2019, 11, 550.  doi: 10.1021/acsami.8b14282

    36. [36]

      Gao, B. J.; Zhou, J.; Wang, H. L.; Zhang, G. P.; He, J. H.; Xu, Q. F.; Li, N. J.; Chen, D. Y.; Li, H.; Lu, J. M. Chin. J. Catal. 2019, 37, 148.

    37. [37]

      Lucovsky, G.; Phillips, J. C. Thin Solid Films 2005, 486, 200.  doi: 10.1016/j.tsf.2004.11.224

    38. [38]

      Frindell, K. L.; Bartl, M. H.; Matthew, R.; Bazan, G. C.; Popitsch, A.; Stucky, G. D. J. Solid State Chem. 2003, 172, 81.  doi: 10.1016/S0022-4596(02)00126-3

    39. [39]

      Carreno, N. V.; Fajardo, H. V.; Maciel, A. P.; Valentini, A.; Pontes, F. M.; Probst, L. F. D.; Leite, E. R.; Longo, E. J. Mol. Catal. A:Chem. 2004, 207, 91.  doi: 10.1016/S1381-1169(03)00496-5

    40. [40]

      Wang, D. K.; Huang, R. K.; Liu, W. J.; Sun, D. R.; Li, Z. H. ACS Catal. 2014, 4, 4254.  doi: 10.1021/cs501169t

    41. [41]

      Sin, J. C.; Lam, S. M.; Lee, K. T.; Mohamed, A. R. Ceram. Int. 2014, 40, 5431.  doi: 10.1016/j.ceramint.2013.10.128

    42. [42]

      Gao, Y. W.; Li, S. M.; Li, Y. X.; Yao, L. Y.; Zhang, H. Appl. Catal. B:Environ. 2017, 202, 165.  doi: 10.1016/j.apcatb.2016.09.005

    43. [43]

      Jian, X.; Liu, X.; Yang, H. M.; Li, J. G.; Song, X. L.; Dai, H. Y.; Liang, Z. H. Appl. Surf. Sci. 2016, 370, 514.  doi: 10.1016/j.apsusc.2016.02.119

    44. [44]

      Huang, X.; Tan, C. L.; Yin, Z. Y.; Zhang, H. Adv. Mater. 2014, 26, 2185.  doi: 10.1002/adma.201304964

    45. [45]

      Yu, J. G.; Yu, X. X. Environ. Sci. Technol. 2008, 42, 4902.  doi: 10.1021/es800036n

    46. [46]

      Zhang, C. H.; Ai, L. H.; Jiang, J. Ind. Eng. Chem. Res. 2015, 54, 153.  doi: 10.1021/ie504111y

    47. [47]

      Liang, R. W.; Jing, F. F.; Shen, L. J.; Qin, N.; Wu, L. J. Hazard. Mater. 2015, 287, 364.  doi: 10.1016/j.jhazmat.2015.01.048

    48. [48]

      Khataee, A. R.; Karimi, A.; Darvishi, R.; Soltani, C.; Safarpour, M.; Hanifehpour, Y.; Joo, S. W. Appl. Catal. A:Gen. 2014, 488, 160.  doi: 10.1016/j.apcata.2014.09.039

    49. [49]

      Zhao, F.; Sun, H. L.; Gao, S.; Su, G. Mater. Chem. 2005, 15, 4209.  doi: 10.1039/b507584j

    50. [50]

      Xu, X. Q.; Liu, R. X.; Cui, Y.; Liang, X.; Lei, C.; Meng, S. Y.; Ma, Y. L.; Lei, Z. Q.; Yang, Z. W. Appl. Catal. B:Environ. 2017, 210, 484.  doi: 10.1016/j.apcatb.2017.04.021

    51. [51]

      Sun, L. P.; Niu, S. Y.; Jin, J.; Yang, G.; Ye, L. Inorg. Chem. Commun. 2006, 9, 679.  doi: 10.1016/j.inoche.2006.03.027

    52. [52]

      Jin, X.; Ye, L.; Wang, H.; Su, Y.; Xie, H.; Zhong, Z.; Zhang, H. Appl. Catal. B:Environ. 2015, 165, 668.  doi: 10.1016/j.apcatb.2014.10.075

  • 加载中
    1. [1]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    2. [2]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    3. [3]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    4. [4]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    5. [5]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    6. [6]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    7. [7]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    8. [8]

      Lingling SuQunyan WuCongzhi WangJianhui LanWeiqun Shi . Theoretical design of polyazole based ligands for the separation of Am(Ⅲ)/Eu(Ⅲ). Chinese Chemical Letters, 2024, 35(8): 109402-. doi: 10.1016/j.cclet.2023.109402

    9. [9]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    10. [10]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    11. [11]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    12. [12]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    13. [13]

      Jie RenHao ZongYaqun HanTianyi LiuShufen ZhangQiang XuSuli Wu . Visual identification of silver ornament by the structural color based on Mie scattering of ZnO spheres. Chinese Chemical Letters, 2024, 35(9): 109350-. doi: 10.1016/j.cclet.2023.109350

    14. [14]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    15. [15]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    16. [16]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    17. [17]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    18. [18]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    19. [19]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    20. [20]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

Metrics
  • PDF Downloads(8)
  • Abstract views(1039)
  • HTML views(163)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return