Citation: Li Zhao, Wang Zhong, Ban Liqin, Wang Jiantao, Lu Shigang. Recent Advances on Surface Modification of Li- and Mn-Rich Cathode Materials[J]. Acta Chimica Sinica, ;2019, 77(11): 1115-1128. doi: 10.6023/A19070265 shu

Recent Advances on Surface Modification of Li- and Mn-Rich Cathode Materials

  • Corresponding author: Wang Zhong, wzwz99@126.com
  • Received Date: 16 July 2019
    Available Online: 4 November 2019

    Fund Project: the Natural Science Foundation-the Joint Foundation of China U1764255Project supported by the National Key Research and Development Program of China (No. 2018YFB0104400) and the Natural Science Foundation-the Joint Foundation of China (No. U1764255)the National Key Research and Development Program of China 2018YFB0104400

Figures(7)

  • With the rapid development of electric cars and energy storage power stations, there is an increasing demand for lithium ion batteries with high energy density. Li- and Mn-rich (LMR) cathode materials with large specific capacity (>250 mAh·g-1) are supposed to accomplish lithium ion batteries with high energy density (>350 Wh·kg-1). The high capacity performance of LMR cathode materials are resulted from the lattice oxygen redox reaction induced by the electrochemical activation of the Li2MnO3 phase. However, the activation of the Li2MnO3 phase and oxygen redox reaction lead to lattice oxygen release and structure transformation, which cause some serious problems such as low initial columbic efficiency, poor rate capability, voltage and capacity degradation after subsequent cycles. The oxygen release and structure transformation always start from the surface, indicating that the surface stability is significant to LMR cathode materials. In this paper, surface modifications such as surface coating, surface doping and surface chemical treatment are reviewed and the mechanism of three surface modification methods for LMR cathode materials are discussed in further. Surface coating is one of the most widely surface modification methods, which can suppress the electrode/electrolyte side reaction and reduce the transition metal dissolution. The effect of surface coating on improving electrochemical performance of LMR cathode materials is always determined by the characteristic of coating layer materials including non-active coating layer, electrochemical active coating layer, Li+ conductive coating layer and electronic conductive coating layer. Surface doping has shown to be an effective method in suppressing oxygen release and structural transformation. Surface chemical treatment has resulted in reducing irreversible capacity loss by activating Li2MnO3 phase. On this basis, surface integrated strategies combined several surface modified methods are introduced and discussed in recent years. The surface intergrated strategies not only enhance the structural stability and suppress electrode/electrolyte surface-interface reaction, but also have an effective role on mitigating structure transformation and lattice oxygen release. Finally, we wish that our review would provide research directions for surface modified strategies of LMR cathode materials in future.
  • 加载中
    1. [1]

      Goodenough, J. B. Energy Storage Mater. 2015, 1, 158.  doi: 10.1016/j.ensm.2015.07.001

    2. [2]

      Kalluri, S.; Yoon, M.; Jo, M.; Park, S.; Myeong, S.; Kim, J.; Dou, S. X.; Guo, Z.; Cho, J. Adv. Energy Mater. 2017, 7, 1601507.  doi: 10.1002/aenm.201601507

    3. [3]

      Deng, B.; Sun, W.; Wang, H.; Chen, T.; Li, X.; Qu, M.; Peng, G. Acta Chim. Sinica 2018, 76, 259(in Chinese).
       

    4. [4]

      Zheng, Z.; Wu, Z.; Xiang, W.; Guo, X. Acta Chim. Sinica 2017, 75, 501(in Chinese).  doi: 10.11862/CJIC.2017.053
       

    5. [5]

      Hua, W.; Wang, Y.; Zhong, Y.; Wang, G.; Zhong, B.; Fang, B.; Guo, X.; Liao, S.; Wang, H. Chin. J. Chem. 2015, 33, 261.  doi: 10.1002/cjoc.201400551

    6. [6]

      Wen, L.; Pilgun, O.; Xien, L.; Min-Joon, L.; Woongrae, C.; Sujong, C.; Youngsik, K.; Jaephil, C. Angew. Chem. 2015, 54, 4440.  doi: 10.1002/anie.201409262

    7. [7]

      Hou, P.; Yin, J.; Ding, M.; Huang, J.; Xu, X. Small 2017, 13, 1701802.  doi: 10.1002/smll.201701802

    8. [8]

      Manthiram, A.; Knight, J. C.; Myung, S. T.; Oh, S. M.; Sun, Y. K. Adv. Energy Mater. 2016, 6, 1501010.  doi: 10.1002/aenm.201501010

    9. [9]

      Erickson, E. M.; Schipper, F.; Penki, T. R.; Shin, J. Y.; Erk, C.; Chesneau, F. F.; Markovsky, B.; Aurbach, D. J. Electrochem. Soc. 2017, 164, A6220.  doi: 10.1149/2.0351701jes

    10. [10]

      Kim, J.; Lee, H.; Cha, H.; Yoon, M.; Park, M.; Cho, J. Adv. Energy Mater. 2018, 8, 1702028.  doi: 10.1002/aenm.201702028

    11. [11]

      Numata, K.; Sakaki, C.; Yamanaka, S. Chem. Lett. 1997, 1997, 725.

    12. [12]

      Numata, K.; Sakaki, C.; Yamanaka, S. Solid State Ionics 1999, 117, 257.  doi: 10.1016/S0167-2738(98)00417-2

    13. [13]

      Lu, Z. H.; Macneil, D. D.; Dahn, J. R. Electrochem. Solid-State Lett. 2001, 7, A503.

    14. [14]

      Johnson, C. S.; Kim, J. S.; Lefief, C.; Li, N.; Vaughey, J. T.; Thackeray, M. M. Electrochem. Commun. 2004, 6, 1085.  doi: 10.1016/j.elecom.2004.08.002

    15. [15]

      Thackeray, M. M.; Johnson, C. S.; Vaughey, J. T.; Li, N.; Hackney, S. A. J. Mater. Chem. 2005, 15, 2257.  doi: 10.1039/b417616m

    16. [16]

      Thackeray, M. M.; Kang, S. H.; Johnson, C. S.; Vaughey, J. T.; Benedek, R.; Hackney, S. A. J. Mater. Chem. 2007, 17, 3112.  doi: 10.1039/b702425h

    17. [17]

      Wang, Z.; Yin, Y.; Ren, Y.; Wang, Z.; Gao, M.; Ma, T.; Zhuang, W.; Lu, S.; Fan, A.; Amine, K. Nano Energy 2017, 31, 247.  doi: 10.1016/j.nanoen.2016.10.014

    18. [18]

      Nayak, P. K.; Erickson, E. M.; Schipper, F.; Penki, T. R.; Munichandraiah, N.; Adelhelm, P.; Sclar, H.; Amalraj, F.; Markovsky, B.; Aurbach, D. Adv. Energy Mater. 2018, 8, 1702397.  doi: 10.1002/aenm.201702397

    19. [19]

      Li, M.; Lu, J.; Chen, Z.; Amine, K. Adv. Mater. 2018, 30, 1800561.  doi: 10.1002/adma.201800561

    20. [20]

      Zuo, Y.; Li, B.; Jiang, N.; Chu, W.; Zhang, H.; Zou, R.; Xia, D. Adv. Mater. 2018, 30, 1707255.  doi: 10.1002/adma.201707255

    21. [21]

      Zheng, J.; Myeong, S.; Cho, W.; Yan, P.; Xiao, J.; Wang, C.; Cho, J.; Zhang, J. G. Adv. Energy Mater. 2016, 7, 1601284.

    22. [22]

      Assat, G.; Tarascon, J.-M. Nat. Energy 2018, 3, 373.  doi: 10.1038/s41560-018-0097-0

    23. [23]

      Yang, C.; Gong, Z.; Zhao, W.; Yang, Y. Acta Chim. Sinica 2017, 75, 212(in Chinese).  doi: 10.7503/cjcu20160458
       

    24. [24]

      Gauthier, M.; Carney, T. J.; Grimaud, A.; Giordano, L.; Pour, N.; Chang, H. H.; Fenning, D. P.; Lux, S. F.; Paschos, O.; Bauer, C. J. Phys. Chem. Lett. 2015, 6, 4653.  doi: 10.1021/acs.jpclett.5b01727

    25. [25]

      Xu, B.; Fell, C. R.; Chi, M.; Meng, Y. S. Energy Environ. Sci. 2011, 4, 2223.  doi: 10.1039/c1ee01131f

    26. [26]

      Oh, P.; Ko, M.; Myeong, S.; Kim, Y.; Cho, J. Adv. Energy Mater. 2014, 4, 1400631.  doi: 10.1002/aenm.201400631

    27. [27]

      Yan, P.; Nie, A.; Zheng, J.; Zhou, Y.; Lu, D.; Zhang, X.; Xu, R.; Belharouak, I.; Zu, X.; Xiao, J. Nano Lett. 2015, 15, 514.  doi: 10.1021/nl5038598

    28. [28]

      Croy, J. R.; Balasubramanian, M.; Gallagher, K. G.; Burrell, A. K. Acc. Chem. Res. 2015, 48, 2813.  doi: 10.1021/acs.accounts.5b00277

    29. [29]

      Kim, J.-S.; Johnson, C. S.; Vaughey, J. T.; Thackeray, M. M.; Hackney, S. A.; Yoon, W.; Grey, C. P. Chem. Mater. 2004, 16, 1996.  doi: 10.1021/cm0306461

    30. [30]

      Kang, S. H.; Kempgens, P.; Greenbaum, S.; Kropf, A. J.; Amine, K.; Thackeray, M. M. J. Mater. Chem. 2007, 17, 2069.  doi: 10.1039/B618715C

    31. [31]

      Jarvis, K. A.; Deng, Z.; Allard, L. F.; Manthiram, A.; Ferreira, P. J. Chem. Mater. 2011, 23, 3614.  doi: 10.1021/cm200831c

    32. [32]

      Mccalla, E.; Lowartz, C. M.; Brown, C. R.; Dahn, J. R. Chem. Mater. 2013, 25, 912.  doi: 10.1021/cm304002b

    33. [33]

      Shunmugasundaram, R.; Senthil Arumugam, R.; Dahn, J. R. Chem. Mater. 2015, 27, 757.  doi: 10.1021/cm504583y

    34. [34]

      Shunmugasundaram, R.; Senthil Arumugam, R.; Harris, K. J.; Goward, G. R.; Dahn, J. R. Chem. Mater. 2016, 28, 55.  doi: 10.1021/acs.chemmater.5b02104

    35. [35]

      Zheng, J.; Xu, P.; Gu, M.; Xiao, J.; Browning, N. D.; Yan, P.; Wang, C.; Zhang, J.-G. Chem. Mater. 2015, 27, 1381.  doi: 10.1021/cm5045978

    36. [36]

      Gu, M.; Belharouak, I.; Zheng, J.; Wu, H.; Xiao, J.; Genc, A.; Amine, K.; Thevuthasan, S.; Baer, D. R.; Zhang, J.-G. ACS Nano 2013, 7, 760.  doi: 10.1021/nn305065u

    37. [37]

      Hong, J.; Seo, D. H.; Kim, S. W.; Gwon, H.; Oh, S. T.; Kang, K. J. Mater. Chem. 2010, 20, 10179.  doi: 10.1039/c0jm01971b

    38. [38]

      Xiao, B.; Sun, X. Adv. Energy Mater. 2018, 8, 1802057.  doi: 10.1002/aenm.201802057

    39. [39]

      Hu, E.; Yu, X.; Lin, R.; Bi, X.; Lu, J.; Bak, S.; Nam, K.-W.; Xin, H. L.; Jaye, C.; Fischer, D. A.; Amine, K.; Yang, X.-Q. Nat. Energy 2018, 3, 690.  doi: 10.1038/s41560-018-0207-z

    40. [40]

      Dai, K.; Wu, J.; Zhuo, Z.; Li, Q.; Sallis, S.; Mao, J.; Ai, G.; Sun, C.; Li, Z.; Gent, W. E.; Chueh, W. C.; Chuang, Y.-d.; Zeng, R.; Shen, Z.-x.; Pan, F.; Yan, S.; Piper, L. F. J.; Hussain, Z.; Liu, G.; Yang, W. Joule 2019, 3, 518.  doi: 10.1016/j.joule.2018.11.014

    41. [41]

      Zheng, J.; Myeong, S.; Cho, W.; Yan, P.; Xiao, J.; Wang, C.; Cho, J.; Zhang, J. G. Adv. Energy Mater. 2017, 7, 1601284.  doi: 10.1002/aenm.201601284

    42. [42]

      Shi, S. J.; Tu, J. P.; Tang, Y. Y.; Liu, X. Y.; Zhang, Y. Q.; Wang, X. L.; Gu, C. D. Electrochim. Acta 2013, 88, 671.  doi: 10.1016/j.electacta.2012.10.111

    43. [43]

      Han, E.; Li, Y.; Zhu, L.; Zhao, L. Solid State Ionics 2014, 255, 113.  doi: 10.1016/j.ssi.2013.12.018

    44. [44]

      Yan, P.; Zheng, J.; Zhang, X.; Xu, R.; Amine, K.; Xiao, J.; Zhang, J.-G.; Wang, C.-M. Chem. Mater. 2016, 28, 857.  doi: 10.1021/acs.chemmater.5b04301

    45. [45]

      Kobayashi, G.; Irii, Y.; Matsumoto, F.; Ito, A.; Ohsawa, Y.; Yamamoto, S.; Cui, Y.; Son, J. Y.; Sato, Y. J. Power Sources 2016, 303, 250.  doi: 10.1016/j.jpowsour.2015.11.014

    46. [46]

      Lee, G.-H.; Choi, I. H.; Oh, M. Y.; Park, S. H.; Nahm, K. S.; Aravindan, V.; Lee, Y.-S. Electrochim. Acta 2016, 194, 454.  doi: 10.1016/j.electacta.2016.02.129

    47. [47]

      Xie, Y.; Chen, S.; Lin, Z.; Yang, W.; Zou, H.; Sun, R. W.-Y. Electrochem. Commun. 2019, 99, 65.  doi: 10.1016/j.elecom.2019.01.005

    48. [48]

      Mu, K.; Cao, Y.; Hu, G.; Du, K.; Yang, H.; Gan, Z.; Peng, Z. Electrochim. Acta 2018, 273, 88.  doi: 10.1016/j.electacta.2018.04.027

    49. [49]

      Chen, C.; Geng, T.; Du, C.; Zuo, P.; Cheng, X.; Ma, Y.; Yin, G. J. Power Sources 2016, 331, 91.  doi: 10.1016/j.jpowsour.2016.09.051

    50. [50]

      Rastgoo-Deylami, M.; Javanbakht, M.; Omidvar, H. Solid State Ionics 2019, 331, 74.  doi: 10.1016/j.ssi.2018.12.025

    51. [51]

      Zheng, J. M.; Zhang, Z. R.; Wu, X. B.; Dong, Z. X.; Zhu, Z.; Yang, Y. J. Electrochem. Soc. 2008, 155, A775.  doi: 10.1149/1.2966694

    52. [52]

      Zheng, J.; Gu, M.; Xiao, J.; Polzin, B. J.; Yan, P.; Chen, X.; Wang, C.; Zhang, J.-G. Chem. Mater. 2014, 26, 6320.  doi: 10.1021/cm502071h

    53. [53]

      Pang, S.; Wang, Y.; Chen, T.; Shen, X.; Xi, X.; Liao, D. Ceram. Int. 2016, 42, 5397.  doi: 10.1016/j.ceramint.2015.12.076

    54. [54]

      Hu, G.; Qi, X.; Hu, K.; Lai, X.; Zhang, X.; Du, K.; Peng, Z.; Cao, Y. Electrochim. Acta 2018, 265, 391.  doi: 10.1016/j.electacta.2018.01.176

    55. [55]

      Sun, S.; Wan, N.; Wu, Q.; Zhang, X.; Pan, D.; Bai, Y.; Lu, X. Solid State Ionics 2015, 278, 85.  doi: 10.1016/j.ssi.2015.05.021

    56. [56]

      Liu, X.; Huang, T.; Yu, A. Electrochim. Acta 2015, 163, 82.  doi: 10.1016/j.electacta.2015.02.155

    57. [57]

      Liu, H.; Qian, D.; Verde, M. G.; Zhang, M.; Baggetto, L.; An, K.; Chen, Y.; Carroll, K. J.; Lau, D.; Chi, M.; Veith, G. M.; Meng, Y. S. ACS Appl. Mater. Interfaces 2015, 7, 19189.  doi: 10.1021/acsami.5b04932

    58. [58]

      Lu, C.; Wu, H.; Zhang, Y.; Liu, H.; Chen, B.; Wu, N.; Wang, S. J. Power Sources 2014, 267, 682.  doi: 10.1016/j.jpowsour.2014.05.122

    59. [59]

      Wu, Y.; Murugan, A. V.; Manthiram, A. J. Electrochem. Soc. 2008, 155, A635.  doi: 10.1149/1.2948350

    60. [60]

      Ma, J.; Li, B.; An, L.; Wei, H.; Wang, X.; Yu, P.; Xia, D. J. Power Sources 2015, 277, 393.  doi: 10.1016/j.jpowsour.2014.11.133

    61. [61]

      Xiao, B.; Wang, B.; Liu, J.; Kaliyappan, K.; Sun, Q.; Liu, Y.; Dadheech, G.; Balogh, M. P.; Yang, L.; Sham, T.-K. Nano Energy 2017, 34, 120.  doi: 10.1016/j.nanoen.2017.02.015

    62. [62]

      Xie, Q.; Zhao, C.; Hu, Z.; Huang, Q.; Chen, C.; Liu, K. RSC Adv. 2015, 5, 77324.  doi: 10.1039/C5RA13233A

    63. [63]

      Chen, J.; Li, Z.; Xiang, H.; Wu, W.; Cheng, S.; Zhang, L.; Wang, Q.; Wu, Y. RSC Adv. 2015, 5, 3031.  doi: 10.1039/C4RA11370E

    64. [64]

      Wu, F.; Li, N.; Su, Y.; Lu, H.; Zhang, L.; An, R.; Wang, Z.; Bao, L.; Chen, S. J. Mater. Chem. 2012, 22, 1489.  doi: 10.1039/C1JM14459F

    65. [65]

      Liu, Y.; Liu, S.; Wang, Y.; Chen, L.; Chen, X. J. Power Sources 2013, 222, 455.  doi: 10.1016/j.jpowsour.2012.09.014

    66. [66]

      Guo, S.; Yu, H.; Liu, P.; Liu, X.; Li, D.; Chen, M.; Ishida, M.; Zhou, H. J. Mater. Chem. A 2014, 2, 4422.  doi: 10.1039/c3ta15206e

    67. [67]

      Jin, Y.; Xu, Y.; Sun, X.; Xiong, L.; Mao, S. Appl. Surf. Sci. 2016, 384, 125.  doi: 10.1016/j.apsusc.2016.04.136

    68. [68]

      He, H.; Zan, L.; Zhang, Y. J. Alloys Compd. 2016, 680, 95.  doi: 10.1016/j.jallcom.2016.04.115

    69. [69]

      Jin, Y.; Xu, Y.; Xiong, L.; Sun, X.; Li, L.; Li, L. Solid State Ionics 2017, 310, 62.  doi: 10.1016/j.ssi.2017.07.012

    70. [70]

      Li, Y.; Huang, H.; Yu, J.; Xia, Y.; Liang, C.; Gan, Y.; Zhang, J.; Zhang, W. J. Alloys Compd. 2019, 783, 349.  doi: 10.1016/j.jallcom.2018.12.357

    71. [71]

      Wang, Z.; Liu, E.; He, C.; Shi, C.; Li, J.; Zhao, N. J. Power Sources 2013, 236, 25.  doi: 10.1016/j.jpowsour.2013.02.022

    72. [72]

      Wang, Z.; Lu, H.-Q.; Yin, Y.-P.; Sun, X.-Y.; Bai, X.-T.; Shen, X.-L.; Zhuang, W.-D.; Lu, S.-G. Rare Metals 2017, 36, 899.  doi: 10.1007/s12598-015-0647-6

    73. [73]

      Zhao, T.; Li, L.; Chen, R.; Wu, H.; Zhang, X.; Chen, S.; Xie, M.; Wu, F.; Lu, J.; Amine, K. Nano Energy 2015, 15, 164.  doi: 10.1016/j.nanoen.2015.04.013

    74. [74]

      Bian, X.; Fu, Q.; Bie, X.; Yang, P.; Qiu, H.; Pang, Q.; Chen, G.; Du, F.; Wei, Y. Electrochim. Acta 2015, 174, 875.  doi: 10.1016/j.electacta.2015.06.085

    75. [75]

      Chen, D.; Zheng, F.; Li, L.; Chen, M.; Zhong, X.; Li, W.; Lu, L. J. Power Sources 2017, 341, 147.  doi: 10.1016/j.jpowsour.2016.11.020

    76. [76]

      Lee, Y.; Lee, J.; Lee, K. Y.; Mun, J.; Lee, J. K.; Choi, W. J. Power Sources 2016, 315, 284.  doi: 10.1016/j.jpowsour.2016.03.024

    77. [77]

      Zhou, L.; Yin, Z.; Tian, H.; Ding, Z.; Li, X.; Wang, Z.; Guo, H. Appl. Surf. Sci. 2018, 456, 763.  doi: 10.1016/j.apsusc.2018.06.114

    78. [78]

      Martha, S. K.; Nanda, J.; Kim, Y.; Unocic, R. R.; Pannala, S.; Dudney, N. J. J. Mater. Chem. A 2013, 1, 5587.  doi: 10.1039/c3ta10586e

    79. [79]

      Kang, S. H.; Thackeray, M. M. Electrochem. Commun. 2009, 11, 748.  doi: 10.1016/j.elecom.2009.01.025

    80. [80]

      Qiao, Q. Q.; Zhang, H. Z.; Li, G. R.; Ye, S. H.; Wang, C. W.; Gao, X. P. J. Mater. Chem. A 2013, 1, 5262.  doi: 10.1039/c3ta00028a

    81. [81]

      Zheng, F.; Yang, C.; Xiong, X.; Xiong, J.; Hu, R.; Chen, Y.; Liu, M. Angew. Chem. Int. Ed. 2015, 54, 13058.  doi: 10.1002/anie.201506408

    82. [82]

      Chen, Y.; Xie, K.; Zheng, C.; Ma, Z.; Chen, Z. ACS Appl. Mater. Interfaces 2014, 6, 16888.  doi: 10.1021/am504412n

    83. [83]

      Li, H.; Zhou, H. Chem. Commun. 2012, 48, 1201.  doi: 10.1039/C1CC14764A

    84. [84]

      Xia, Q.; Zhao, X.; Xu, M.; Ding, Z.; Liu, J.; Chen, L.; Ivey, D. G.; Wei, W. J. Mater. Chem. A 2015, 3, 3995.  doi: 10.1039/C4TA05848H

    85. [85]

      Pang, S.; Xu, K.; Wang, Y.; Shen, X.; Wang, W.; Su, Y.; Zhu, M.; Xi, X. J. Power Sources 2017, 365, 68.  doi: 10.1016/j.jpowsour.2017.08.077

    86. [86]

      Park, K.; Kim, J.; Park, J.-H.; Hwang, Y.; Han, D. J. Power Sources 2018, 408, 105.  doi: 10.1016/j.jpowsour.2018.10.001

    87. [87]

      Ma, Y.; Liu, P.; Xie, Q.; Zhang, G.; Zheng, H.; Cai, Y.; Li, Z.; Wang, L.; Zhu, Z.-Z.; Mai, L. Nano Energy 2019, 59, 184.  doi: 10.1016/j.nanoen.2019.02.040

    88. [88]

      Wu, F.; Li, N.; Su, Y.; Shou, H.; Bao, L.; Yang, W.; Zhang, L.; An, R.; Chen, S. Adv. Mater. 2013, 25, 3722.  doi: 10.1002/adma.201300598

    89. [89]

      Wang, L.; Zhao, D.; Liu, X.; Yu, P.; Fu, H. Acta Chim. Sinica 2017, 75, 231(in Chinese).  doi: 10.7503/cjcu20160577
       

    90. [90]

      Li, Z.; Wang, Z.; Li, Q.; Ban, L.; Zhuang, W.; Lu, S. Chinese J. Inorg. Chem. 2019, 35, 1561(in Chinese).  doi: 10.11862/CJIC.2019.192

    91. [91]

      Song, B.; Lai, M. O.; Liu, Z.; Liu, H.; Lu, L. J. Mater. Chem. A 2013, 1, 9954.  doi: 10.1039/c3ta11580a

    92. [92]

      Zhang, J.; Lu, Q.; Fang, J.; Wang, J.; Yang, J.; Nuli, Y. ACS Appl. Mater. Interfaces 2014, 6, 17965.  doi: 10.1021/am504796n

    93. [93]

      Wu, C.; Fang, X.; Guo, X.; Mao, Y.; Ma, J.; Zhao, C.; Wang, Z.; Chen, L. J. Power Sources 2013, 231, 44.  doi: 10.1016/j.jpowsour.2012.11.138

    94. [94]

      Wang, D.; Wang, X.; Yang, X.; Yu, R.; Ge, L.; Shu, H. J. Power Sources 2015, 293, 89.  doi: 10.1016/j.jpowsour.2015.05.058

    95. [95]

      Wu, F.; Liu, J.; Li, L.; Zhang, X.; Luo, R.; Ye, Y.; Chen, R. ACS Appl. Mater. Interfaces 2016, 8, 23095.  doi: 10.1021/acsami.6b07431

    96. [96]

      Kim, I. T.; Knight, J. C.; Celio, H.; Manthiram, A. J. Mater. Chem. A 2014, 2, 8696.  doi: 10.1039/c4ta00898g

    97. [97]

      Chen, D.; Tu, W.; Chen, M.; Hong, P.; Zhong, X.; Zhu, Y.; Yu, Q.; Li, W. Electrochim. Acta 2016, 193, 45.  doi: 10.1016/j.electacta.2016.02.043

    98. [98]

      Liu, H.; Chen, C.; Du, C.; He, X.; Yin, G.; Song, B.; Zuo, P.; Cheng, X.; Ma, Y.; Gao, Y. J. Mater. Chem. A 2015, 3, 2634.  doi: 10.1039/C4TA04823G

    99. [99]

      Nayak, P. K.; Grinblat, J.; Levi, M.; Levi, E.; Kim, S.; Choi, J. W.; Aurbach, D. Adv. Energy Mater. 2016, 6, 1502398.  doi: 10.1002/aenm.201502398

    100. [100]

      Su, X.; Wang, X.; Chen, H.; Yu, Z.; Qi, J.; Tao, S.; Chu, W.; Song, L. Chin. J. Chem. 2017, 35, 1853.  doi: 10.1002/cjoc.201700265

    101. [101]

      Qing, R. P.; Shi, J. L.; Xiao, D. D.; Zhang, X. D.; Yin, Y. X.; Zhai, Y. B.; Gu, L.; Guo, Y. G. Adv. Energy Mater. 2016, 6, 1501914.  doi: 10.1002/aenm.201501914

    102. [102]

      Liu, S.; Liu, Z.; Shen, X.; Li, W.; Gao, Y.; Banis, M. N.; Li, M.; Chen, K.; Zhu, L.; Yu, R. Adv. Energy Mater. 2018, 8, 1802105.  doi: 10.1002/aenm.201802105

    103. [103]

      Zhang, X.; Cao, S.; Yu, R.; Li, C.; Huang, Y.; Wang, Y.; Wang, X.; Gairong, C. ACS Appl. Energy Mater. 2019, 2, 1563.  doi: 10.1021/acsaem.8b02178

    104. [104]

      Huang, J.; Liu, H.; Hu, T.; Meng, Y. S.; Luo, J. J. Power Sources 2018, 375, 21.  doi: 10.1016/j.jpowsour.2017.11.048

    105. [105]

      Zhao, Y.; Liu, J.; Wang, S.; Ji, R.; Xia, Q.; Ding, Z.; Wei, W.; Liu, Y.; Wang, P.; Ivey, D. G. Adv. Funct. Mater. 2016, 26, 4760.  doi: 10.1002/adfm.201600576

    106. [106]

      Shang, H.; Ning, F.; Li, B.; Zuo, Y.; Lu, S.; Xia, D. ACS Appl. Mater. Interfaces 2018, 10, 21349.  doi: 10.1021/acsami.8b06271

    107. [107]

      Kang, S. H.; Johnson, C. S.; Vaughey, J. T.; Amine, K.; Thackeray, M. M. J. Electrochem. Soc. 2006, 153.

    108. [108]

      Paik, Y.; Grey, C. P.; Johnson, C. S.; Kim, J.-S.; Thackeray, M. M. Chem. Mater. 2002, 14, 5109.  doi: 10.1021/cm0206385

    109. [109]

      Benedek, R.; Thackeray, M. M.; Van De Walle, A. Chem. Mater. 2008, 20, 5485.  doi: 10.1021/cm703042r

    110. [110]

      Denis, Y.; Yanagida, K.; Nakamura, H. J. Electrochem. Soc. 2010, 157, A1177.  doi: 10.1149/1.3479382

    111. [111]

      Oh, P.; Myeong, S.; Cho, W.; Lee, M.-J.; Ko, M.; Jeong, H. Y.; Cho, J. Nano Lett. 2014, 14, 5965.  doi: 10.1021/nl502980k

    112. [112]

      Zhang, J.; Lei, Z.; Wang, J.; Nuli, Y.; Yang, J. ACS Appl. Mater. Interfaces 2015, 7, 15821.  doi: 10.1021/acsami.5b02937

    113. [113]

      Erickson, E. M.; Sclar, H.; Schipper, F.; Liu, J.; Tian, R.; Ghanty, C.; Burstein, L.; Leifer, N.; Grinblat, J.; Talianker, M. Adv. Energy Mater. 2017, 7, 1700708.  doi: 10.1002/aenm.201700708

    114. [114]

      Qiu, B.; Zhang, M.; Wu, L.; Wang, J.; Xia, Y.; Qian, D.; Liu, H.; Hy, S.; Chen, Y.; An, K.; Zhu, Y.; Liu, Z.; Meng, Y. S. Nat. Commun. 2016, 7, 12108.  doi: 10.1038/ncomms12108

    115. [115]

      Danna, Q.; Bo, X.; Miaofang, C.; Shirley, M. Y. Phys. Chem. Chem. Phys. 2014, 16, 14665.  doi: 10.1039/C4CP01799D

    116. [116]

      James, C.; Wu, Y.; Sheldon, B. W.; Qi, Y. Solid State Ionics 2016, 289, 87.  doi: 10.1016/j.ssi.2016.02.019

    117. [117]

      Huang, Z.; Xiong, T.; Lin, X.; Tian, M.; Zeng, W.; He, J.; Shi, M.; Li, J.; Zhang, G.; Mai, L. J. Power Sources 2019, 432, 8.  doi: 10.1016/j.jpowsour.2019.05.069

    118. [118]

      Liu, W.; Oh, P.; Liu, X.; Myeong, S.; Cho, W.; Cho, J. Adv. Energy Mater. 2015, 5, 1500274.  doi: 10.1002/aenm.201500274

    119. [119]

      Zhang, X. D.; Shi, J. L.; Liang, J. Y.; Yin, Y. X.; Zhang, J. N.; Yu, X. Q.; Guo, Y. G. Adv. Mater. 2018, 30, 1801751.  doi: 10.1002/adma.201801751

    120. [120]

      Cui, H.; Li, H.; Liu, J.; Zhang, Y.; Cheng, F.; Chen, J. Inorg. Chem. Front. 2019, 6, 1694.  doi: 10.1039/C9QI00333A

    121. [121]

      Guo, H.; Jia, K.; Han, S.; Zhao, H.; Qiu, B.; Xia, Y.; Liu, Z. Adv. Mater. Interfaces 2018, 5, 1701465.  doi: 10.1002/admi.201701465

    122. [122]

      Li, Q.; Zhou, D.; Zhang, L.; Ning, D.; Chen, Z.; Xu, Z.; Gao, R.; Liu, X.; Xie, D.; Schumacher, G. Adv. Funct. Mater. 2019, 29, 1806706.  doi: 10.1002/adfm.201806706

  • 加载中
    1. [1]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    2. [2]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    3. [3]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    4. [4]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    5. [5]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    6. [6]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Preparation of Superhydrophobic Surfaces and Their Application in Oily Wastewater Treatment: Design of a Comprehensive Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(2): 34-40. doi: 10.3866/PKU.DXHX202307081

    7. [7]

      Honglian Liang Xiaozhe Kuang Fuping Wang Yu Chen . Exploration and Practice of Integrating Ideological and Political Education into Physical Chemistry: a Case on Surface Tension and Gibbs Free Energy. University Chemistry, 2024, 39(10): 433-440. doi: 10.12461/PKU.DXHX202405073

    8. [8]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    9. [9]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    10. [10]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    11. [11]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    12. [12]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    13. [13]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    14. [14]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

    15. [15]

      Yongmin Zhang Shuang Guo Mingyue Zhu Menghui Liu Sinong Li . Design and Improvement of Physicochemical Experiments Based on Problem-Oriented Learning: a Case Study of Liquid Surface Tension Measurement. University Chemistry, 2024, 39(2): 21-27. doi: 10.3866/PKU.DXHX202307026

    16. [16]

      Yanhui Sun Junmin Nan Guozheng Ma Xiaoxi Zuo Guoliang Li Xiaoming Lin . Exploration and Teaching Practice of Ideological and Political Elements in Interface Physical Chemistry: Taking “Additional Pressure on Curved Surfaces” as an Teaching Example. University Chemistry, 2024, 39(11): 20-27. doi: 10.3866/PKU.DXHX202402023

    17. [17]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    18. [18]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    19. [19]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    20. [20]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

Metrics
  • PDF Downloads(64)
  • Abstract views(2878)
  • HTML views(1041)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return