Citation: Chi Jingyuan, Li Jing, Ren Shaokang, Su Shao, Wang Lianhui. Construction and Application of DNA-two-dimensional Layered Nanomaterials Sensing Platform[J]. Acta Chimica Sinica, ;2019, 77(12): 1230-1238. doi: 10.6023/A19070262 shu

Construction and Application of DNA-two-dimensional Layered Nanomaterials Sensing Platform

  • Corresponding author: Wang Lianhui, iamlhwang@njupt.edu.cn
  • Received Date: 12 July 2019
    Available Online: 18 December 2019

    Fund Project: Project supported by the National Key Research and Development Program of China (No. 2017YFA0205302), the National Natural Science Foundation of China (Nos. 61671250, 21475064) and the Jiangsu College Students' innovation and entrepreneurship training program (No. SZD2018013)the National Natural Science Foundation of China 61671250the National Key Research and Development Program of China 2017YFA0205302the Jiangsu College Students' innovation and entrepreneurship training program SZD2018013the National Natural Science Foundation of China 21475064

Figures(7)

  • Combining the specific recognition ability of DNA molecules with the superior physical and chemical properties of two-dimensional (2D) layered materials, a DNA-2D layered nanomaterial sensing platform was constructed. More and more researchers are devoted to develop this sensing platform, which has become one of the important research directions in the field of chemical/biological sensors. In view of the rapid development of the 2D layered materials, this paper firstly introduces the construction principle of the DNA-2D layered material sensing platform. Then we mainly review the application of the sensing platform in the analysis of chemical and biological molecules, including metal ions, mycotoxins, ATP, amino acid, antibiotics, nucleic acids, proteins and cancer cells. Finally, the future of this sensing platform is prospected.
  • 加载中
    1. [1]

      Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666.  doi: 10.1126/science.1102896

    2. [2]

      Zhang, H. ACS Nano 2015, 9, 9451.  doi: 10.1021/acsnano.5b05040

    3. [3]

      Tan, C.; Cao, X.; Wu, X. J.; He, Q.; Yang, J.; Zhang, X.; Chen, J.; Zhao, W.; Han, S.; Nam, G. H.; Sindoro, M.; Zhang, H. Chem. Rev. 2017, 117, 6225.  doi: 10.1021/acs.chemrev.6b00558

    4. [4]

      Chen, Y.; Fan, Z.; Zhang, Z.; Niu, W.; Li, C.; Yang, N.; Chen, B.; Zhang, H. Chem. Rev. 2018, 118, 6409.  doi: 10.1021/acs.chemrev.7b00727

    5. [5]

      Li, X.; Shan, J.; Zhang, W.; Su, S.; Yuwen, L. H.; Wang, L. H. Small 2017, 13, 1602660.  doi: 10.1002/smll.201602660

    6. [6]

      Qiao, W. Z.; Song, T. Q.; Zhao, B. Chinese J. Chem. 2019, 37, 474.  doi: 10.1002/cjoc.201800587

    7. [7]

      Cao L. Y.; Wang, T. T.; Wang, C. Chinese J. Chem. 2018, 36, 754.  doi: 10.1002/cjoc.201800144

    8. [8]

      Zhang, D. D.; Yuan, Z. Z.; Zhang, G. Q.; Tian, N.; Liu, D. M.; Zhang, Y. Z. Acta Chim. Sinica 2018, 76, 537.
       

    9. [9]

      Tan, X. Y.; Yang, S. Y.; Li, H. J. Atca Chim. Sinica 2017, 75, 271.
       

    10. [10]

      Lin, X. Y.; Wang, J. Acta Chim. Sinica 2017, 75, 979.
       

    11. [11]

      Lu, C. H.; Yang, H. H.; Zhu, C. L.; Chen, X.; Chen, G. N. Angew. Chem. Int. Ed. 2009, 48, 4785.  doi: 10.1002/anie.200901479

    12. [12]

      He, S.; Song, B.; Li, D.; Zhu, C.; Qi, W.; Wen, Y.; Wang, L.; Song, S.; Fang, H.; Fan, C. Adv. Funct. Mater. 2010, 20, 453.  doi: 10.1002/adfm.200901639

    13. [13]

      Liu, B.; Sun, Z.; Zhang, X.; Liu, J. Anal. Chem. 2013, 85, 7987.  doi: 10.1021/ac401845p

    14. [14]

      Antony, J.; Grimme, S. Phys. Chem. Chem. Phys. 2008, 10, 2722.  doi: 10.1039/b718788b

    15. [15]

      Varghese, N.; Mogera, U.; Govindaraj, A.; Das, A.; Maiti, P. K.; Sood, A. K.; Rao, C. ChemPhysChem 2009, 10, 206.  doi: 10.1002/cphc.200800459

    16. [16]

      Vovusha, H.; Sanyal, B. RSC Adv. 2015, 5, 67427.  doi: 10.1039/C5RA14664J

    17. [17]

      Sadeghi, M.; Jahanshahi, M.; Ghorbanzadeh, M.; Najafpour, G. Appl. Surf. Sci. 2018, 434, 176.  doi: 10.1016/j.apsusc.2017.10.162

    18. [18]

      Lu, C.; Huang, Z.; Liu, B.; Liu, Y.; Ying, Y.; Liu, J. Angew. Chem. Int. Ed. 2017, 56, 6208.  doi: 10.1002/anie.201702998

    19. [19]

      Huang, Z.; Liu, J. Langmuir 2017, 34, 1171.

    20. [20]

      Su, S.; Wu, W.; Gao, J.; Lu, J.; Fan, C. J. Mater. Chem. 2012, 22, 18101.  doi: 10.1039/c2jm33284a

    21. [21]

      Su, S.; Chen, S.; Fan, C. Green Energy Environ. 2018, 3, 97.  doi: 10.1016/j.gee.2017.08.005

    22. [22]

      Wen, Y.; Xing, F.; He, S.; Song, S.; Wang, L.; Long, Y.; Li, D.; Fan, C. Chem. Commun. 2010, 46, 2596.  doi: 10.1039/b924832c

    23. [23]

      Ge, J.; Du, Y. H.; Chen, J. J.; Zhang, L.; Bai, D. M.; Ji, D. Y.; Hu, Y. L.; Li, Z. H. Sensor. Actuat. B-Chem. 2017, 249, 189.  doi: 10.1016/j.snb.2017.04.094

    24. [24]

      Wang, C.; Cui, X.; Li, Y.; Li, H.; Huang, L.; Bi, J.; Luo, J.; Ma, L. Q.; Zhou, W.; Cao, Y.; Wang, B.; Miao, F. Sci. Rep. 2016, 6, 21711.  doi: 10.1038/srep21711

    25. [25]

      Wang, X.; Gao, W.; Yan, W.; Li, P.; Zou, H.; Wei, Z.; Guan, W.; Ma, Y.; Wu, S.; Yu, Y.; Ding, K. ACS Appl. Nano Mater. 2018, 1, 2341.  doi: 10.1021/acsanm.8b00380

    26. [26]

      Liu, M.; Zhao, H.; Chen, S.; Yu, H.; Zhang, Y.; Quan, X. Chem. Commun. 2011, 47, 7749.  doi: 10.1039/c1cc12006a

    27. [27]

      Wang, Q.; Wang, W.; Lei, J.; Xu, N.; Gao, F.; Ju, H. Anal. Chem. 2013, 85, 12182.  doi: 10.1021/ac403646n

    28. [28]

      Mao, K.; Wu, Z.; Chen, Y.; Zhou, X.; Shen, A.; Hu, J. Talanta 2015, 132, 658.  doi: 10.1016/j.talanta.2014.10.026

    29. [29]

      Wen, Y.; Peng, C.; Li, D.; Zhuo, L.; He, S.; Wang, L.; Huang, Q.; Xu, Q.-H.; Fan, C. Chem. Commun. 2011, 47, 6278.  doi: 10.1039/c1cc11486g

    30. [30]

      Zhang, H.; Ruan, Y.; Lin, L.; Lin, M.; Zeng, X.; Xi, Z.; Fu, F. Spectrochim. Acta Part A 2015, 146, 1.  doi: 10.1016/j.saa.2015.02.113

    31. [31]

      Lu, C.; Huang, P.-J. J.; Ying, Y.; Liu, J. Biosens. Bioelectron. 2016, 79, 244.  doi: 10.1016/j.bios.2015.12.043

    32. [32]

      Li, M.; Zhou, X.; Ding, W.; Guo, S.; Wu, N. Biosens. Bioelectron. 2013, 41, 889.  doi: 10.1016/j.bios.2012.09.060

    33. [33]

      Cui, X.; Zhu, L.; Wu, J.; Hou, Y.; Wang, P.; Wang, Z.; Yang, M. Biosens. Bioelectron. 2015, 63, 506.  doi: 10.1016/j.bios.2014.07.085

    34. [34]

      Sharon, E.; Liu, X.; Freeman, R.; Yehezkeli, O.; Willner, I. Electroanalysis 2013, 25, 851.  doi: 10.1002/elan.201200581

    35. [35]

      Zhang, Y.; Zhao, H.; Wu, Z.; Xue, Y.; Zhang, X.; He, Y.; Li, X.; Yuan, Z. Biosens. Bioelectron. 2013, 48, 180.  doi: 10.1016/j.bios.2013.04.013

    36. [36]

      Tu, J. W.; Gan, Y.; Hu, Q. W.; Wang, Q.; Ren, T. L.; Sun, Q. L.; Wan, H.; Wang, P. Front. Chem. 2018, 6, 333.  doi: 10.3389/fchem.2018.00333

    37. [37]

      Zhao, X. H.; Kong, R. M.; Zhang, X. B.; Meng, H. M.; Liu, W. N.; Tan, W.; Shen, G. L.; Yu, R. Q.. Anal. Chem. 2011, 83, 5062.  doi: 10.1021/ac200843x

    38. [38]

      Li, M.; Zhou, X.; Guo, S.; Wu, N. Biosens. Bioelectron. 2013, 43, 69.  doi: 10.1016/j.bios.2012.11.039

    39. [39]

      Wang, M.; Zhang, S.; Ye, Z.; Peng, D.; He, L.; Yan, F.; Yang, Y.; Zhang, H.; Zhang, Z. Microchim. Acta 2015, 182, 2251.  doi: 10.1007/s00604-015-1569-6

    40. [40]

      Lang, M.; Li, Q.; Huang, H.; Yu, F.; Chen, Q. Microchim. Acta 2016, 183, 1659.  doi: 10.1007/s00604-016-1795-6

    41. [41]

      Ravikumar, A.; Panneerselvam, P.; Radhakrishnan, K.; Christus, A. A. B.; Sivanesan, S. Appl. Surf. Sci. 2018, 449, 31.  doi: 10.1016/j.apsusc.2017.12.098

    42. [42]

      Lu, Z.; Chen, X.; Hu, W. Sensor. Actuat. B-Chem. 2017, 246, 61.  doi: 10.1016/j.snb.2017.02.062

    43. [43]

      Xiao, X.; Tao, J.; Zhang, H. Z.; Huang, C. Z.; Zhen, S. J. Biosens. Bioelectron. 2016, 85, 822.  doi: 10.1016/j.bios.2016.05.091

    44. [44]

      Pu, W. D.; Zhang, L.; Huang, C. Z. Anal. Methods 2012, 4, 1662.  doi: 10.1039/c2ay25166c

    45. [45]

      Yang, X.; Han, Q.; Zhang, Y.; Wu, J.; Tang, X.; Dong, C.; Liu, W. Talanta 2015, 131, 672.  doi: 10.1016/j.talanta.2014.08.023

    46. [46]

      Wang, X.; You, Z.; Sha, H.; Cheng, Y.; Zhu, H.; Sun, W. Talanta 2014, 128, 373.  doi: 10.1016/j.talanta.2014.04.078

    47. [47]

      Lan, L.; Yao, Y.; Ping, J.; Ying, Y. Biosens. Bioelectron. 2017, 91, 504.  doi: 10.1016/j.bios.2017.01.007

    48. [48]

      Li, F.; Feng, Y.; Zhao, C.; Li, P.; Tang, B. Chem. Commun. 2012, 48, 127.  doi: 10.1039/C1CC15694B

    49. [49]

      Wang, Y.; Ma, T.; Ma, S.; Liu, Y.; Tian, Y.; Wang, R.; Jiang, Y.; Hou, D.; Wang, J. Microchim. Acta 2017, 184, 203.  doi: 10.1007/s00604-016-2011-4

    50. [50]

      Li, H.; Sun, D.; Liu, Y.; Liu, Z. Biosens. Bioelectron. 2014, 55, 149.  doi: 10.1016/j.bios.2013.11.079

    51. [51]

      Su, S.; Fan, J.; Xue, B.; Yuwen, L.; Liu, X.; Pan, D.; Fan, C.; Wang, L. ACS Appl. Mater. Interfaces 2014, 6, 1152.  doi: 10.1021/am404811j

    52. [52]

      Su, S.; Chao, J.; Pan, D.; Wang, L.; Fan, C. Electroanalysis 2015, 27, 1062.  doi: 10.1002/elan.201400655

    53. [53]

      Hu, Y.; Huang, Y.; Tan, C.; Zhang, X.; Lu, Q.; Sindoro, M.; Huang, X.; Huang, W.; Wang, L.; Zhang, H. Mater. Chem. Front. 2017, 1, 24.  doi: 10.1039/C6QM00195E

    54. [54]

      Zhang, Y.; Zheng, B.; Zhu, C.; Zhang, X.; Tan, C.; Li, H.; Chen, B.; Yang, J.; Chen, J.; Huang, Y; Wang, L.; Zhang, H. Adv. Mater. 2015, 27, 935.  doi: 10.1002/adma.201404568

    55. [55]

      Wang, X.; Nan, F.; Zhao, J.; Yang, T.; Ge, T.; Jiao, K. Biosens. Bioelectron. 2015, 64, 386.  doi: 10.1016/j.bios.2014.09.030

    56. [56]

      Li, F.; Huang, Y.; Yang, Q.; Zhong, Z.; Li, D.; Wang, L.; Song, S.; Fan, C. Nanoscale 2010, 2, 1021.  doi: 10.1039/b9nr00401g

    57. [57]

      Pei, H.; Li, J.; Lv, M.; Wang, J.; Gao, J.; Lu, J.; Li, Y.; Huang, Q.; Hu, J.; Fan, C. J. Am. Chem. Soc. 2012, 134, 13843.  doi: 10.1021/ja305814u

    58. [58]

      Loan, P. T. K.; Zhang, W.; Lin, C. T.; Wei, K. H.; Li, L. J.; Chen, C. H. Adv. Mater. 2014, 26, 4838.  doi: 10.1002/adma.201401084

    59. [59]

      Wang, S.; Zhang, Y.; Ning, Y.; Zhang, G. J. Analyst 2015, 140, 434.  doi: 10.1039/C4AN01738B

    60. [60]

      Yuan, Y.; Li, R.; Liu, Z. Anal. Chem. 2014, 86, 3610.  doi: 10.1021/ac5002096

    61. [61]

      Xiao, Y.; Sheng, Y.; Zhou, J.; Chen, M.; Wen, W.; Zhang, X.; Wang, S. Analyst 2017, 142, 2617.  doi: 10.1039/C7AN00553A

    62. [62]

      Hu, K.; Zhong, T.; Huang, Y.; Chen, Z.; Zhao, S. Microchim. Acta 2015, 182, 949.  doi: 10.1007/s00604-014-1412-5

    63. [63]

      Huang, J.; Ye, L.; Gao, X.; Li, H.; Xu, J.; Li, Z. J. Mater. Chem. B 2015, 3, 2395.  doi: 10.1039/C4TB01986E

    64. [64]

      Zhang, Z.; Liu, Y.; Ji, X.; Xiang, X.; He, Z. Analyst 2014, 139, 4806.  doi: 10.1039/C4AN00933A

    65. [65]

      Su, S.; Cao, W.; Liu, W.; Lu, Z.; Zhu, D.; Chao, J.; Weng, L.; Wang, L.; Fan, C.; Wang, L. Biosens. Bioelectron. 2017, 94, 552.  doi: 10.1016/j.bios.2017.03.040

    66. [66]

      Dong, H.; Lei, J.; Ding, L.; Wen, Y.; Ju, H.; Zhang, X. Chem. Rev. 2013, 113, 6207.  doi: 10.1021/cr300362f

    67. [67]

      Xiao, M.; Man, T.; Zhu, C.; Pei, H.; Shi, J.; Li, L.; Qu, X.; Shen, X.; Li, J. ACS Appl. Mater. Interfaces 2018, 10, 7852.  doi: 10.1021/acsami.7b18984

    68. [68]

      Xiao, M.; Chandrasekaran, A. R.; Ji, W.; Li, F.; Man, T.; Zhu, C.; Shen, X.; Pei, H.; Li, Q.; Li, L. ACS Appl. Mater. Interfaces 2018, 10, 35794.  doi: 10.1021/acsami.8b14035

    69. [69]

      Miao, X.; Cheng, Z.; Ma, H.; Li, Z.; Xue, N.; Wang, P. Anal. Chem. 2017, 90, 1098.

    70. [70]

      Xi, Q.; Zhou, D. M.; Kan, Y.-Y.; Ge, J.; Wu, Z. K.; Yu, R. Q.; Jiang, J. H. Anal. Chem. 2014, 86, 1361.  doi: 10.1021/ac403944c

    71. [71]

      Shuai, H. L.; Huang, K. J.; Xing, L. L.; Chen, Y. X. Biosens. Bioelectron. 2016, 86, 337.  doi: 10.1016/j.bios.2016.06.057

    72. [72]

      Yang, L.; Liu, C.; Ren, W.; Li, Z. ACS Appl. Mater. Interfaces 2012, 4, 6450.  doi: 10.1021/am302268t

    73. [73]

      Hong, C.; Baek, A.; Hah, S. S.; Jung, W.; Kim, D. E. Anal. Chem. 2016, 88, 2999.  doi: 10.1021/acs.analchem.6b00046

    74. [74]

      Liu, Y. F.; Xue, J. T.; Yan, H. J.; Yang, L. J.; Liu, W.; Sun, X, D. Chinese J. Anal. Chem. 2017, 45, 303.  doi: 10.1016/S1872-2040(17)60997-6

    75. [75]

      Xiao, L.; Xu, L.; Gao, C.; Zhang, Y.; Yao, Q.; Zhang, G. J. Sensors 2016, 16, 1561.  doi: 10.3390/s16101561

    76. [76]

      Li, B. L.; Zou, H. L.; Lu, L.; Yang, Y.; Lei, J. L.; Luo, H. Q.; Li, N. B. Adv. Funct. Mater. 2015, 25, 3541.  doi: 10.1002/adfm.201500180

    77. [77]

      Singhal, C.; Khanuja, M.; Chaudhary, N.; Pundir, C.; Narang, J. Sci. Rep. 2018, 8, 7734.  doi: 10.1038/s41598-018-25824-8

    78. [78]

      Zhang, W.; Dai, Z.; Liu, X.; Yang, J. Biosens. Bioelectron. 2018, 105, 116.  doi: 10.1016/j.bios.2018.01.038

    79. [79]

      Lee, D. W.; Lee, J.; Sohn, I. Y.; Kim, B. Y.; Son, Y. M.; Bark, H.; Jung, J.; Choi, M.; Kim, T. H.; Lee, C.; Lee, N. Nano Res. 2015, 8, 2340.  doi: 10.1007/s12274-015-0744-8

    80. [80]

      Loo, A. H.; Bonanni, A.; Pumera, M. Analyst 2016, 141, 4654.  doi: 10.1039/C6AN00454G

    81. [81]

      Hu, Y.; Li, F.; Bai, X.; Li, D.; Hua, S.; Wang, K.; Niu, L. Chem. Commun. 2011, 47, 1743.  doi: 10.1039/C0CC04514D

    82. [82]

      Li, Z.; Zhu, W.; Zhang, J.; Jiang, J.; Shen, G.; Yu, R. Analyst 2013, 138, 3616.  doi: 10.1039/c3an00421j

    83. [83]

      Cai, B.; Wang, S.; Huang, L.; Ning, Y.; Zhang, Z.; Zhang, G. J. ACS Nano 2014, 8, 2632.  doi: 10.1021/nn4063424

    84. [84]

      Yew, Y. T.; Sofer, Z.; Mayorga-Martinez, C. C.; Pumera, M. Mater. Chem. Front. 2017, 1, 1130.  doi: 10.1039/C6QM00341A

    85. [85]

      Zhu, D.; Zhang, L.; Ma, W.; Lu, S.; Xing, X. Biosens. Bioelectron. 2015, 65, 152.  doi: 10.1016/j.bios.2014.10.019

    86. [86]

      Tu, Y.; Li, W.; Wu, P.; Zhang, H.; Cai, C. Anal. Chem. 2013, 85, 2536.  doi: 10.1021/ac303772m

    87. [87]

      Cai, B.; Guo, S.; Li, Y. Anal. Methods 2018, 10, 230.  doi: 10.1039/C7AY02329D

    88. [88]

      Zhao, J.; Jin, X.; Vdovenko, M.; Zhang, L.; Sakharov, I. Y.; Zhao, S. Chem. Commun. 2015, 51, 11092.  doi: 10.1039/C5CC04381F

    89. [89]

      Zhou, J.; Li, Z.; Ying, M.; Liu, M.; Wang, X.; Wang, X.; Cao, L.; Zhang, H.; Xu, G. Nanoscale 2018, 10, 5060.  doi: 10.1039/C7NR08900G

    90. [90]

      Ouyang, W.; Liu, Z.; Zhang, G.; Chen, Z.; Guo, L.; Lin, Z.; Qiu, B.; Chen, G. Anal. Methods 2016, 8, 8492.  doi: 10.1039/C6AY02551J

    91. [91]

      Wang, M.; Yin, H.; Zhou, Y.; Sui, C.; Wang, Y.; Meng, X.; Waterhouse, G. I.; Ai, S. Biosens. Bioelectron. 2019, 128, 137.  doi: 10.1016/j.bios.2018.12.048

    92. [92]

      Lin, C.; Katilius, E.; Liu, Y.; Zhang, J.; Yan, H. Angew. Chem. Int. Ed. 2006, 45, 5296.  doi: 10.1002/anie.200600438

    93. [93]

      Su, S.; Sun, H.; Cao, W.; Chao, J.; Peng, H.; Zuo, X.; Yuwen, L.; Fan, C.; Wang, L. ACS Appl. Mater. Interfaces 2016, 8, 6826.  doi: 10.1021/acsami.5b12833

    94. [94]

      Chang, H.; Tang, L.; Wang, Y.; Jiang, J.; Li, J. Anal. Chem. 2010, 82, 2341.  doi: 10.1021/ac9025384

    95. [95]

      He, Y.; Xing, X.; Tang, H.; Pang, D. Small 2013, 9, 2097.  doi: 10.1002/smll.201202739

    96. [96]

      Yin, X.; Cai, J.; Feng, H.; Wu, Z.; Zou, J.; Cai, Q. New J. Chem. 2015, 39, 1892.  doi: 10.1039/C4NJ01971G

    97. [97]

      Zhao, L.; Cheng, M.; Liu, G.; Lu, H.; Gao, Y.; Yan, X.; Liu, F.; Sun, P.; Lu, G. Sensor. Actuat. B-Chem. 2018, 273, 185.  doi: 10.1016/j.snb.2018.06.004

    98. [98]

      Zhou, Z. M.; Zhou, J.; Chen, J.; Yu, R. N.; Zhang, M. Z.; Song, J. T.; Zhao, Y. D. Biosens. Bioelectron. 2014, 59, 397.  doi: 10.1016/j.bios.2014.04.002

    99. [99]

      Lin, K. L.; Yang, T.; Zou, H. Y.; Li, Y. F.; Huang, C. Z. Talanta 2019, 192, 400.  doi: 10.1016/j.talanta.2018.09.066

    100. [100]

      Song, P.; Ye, D.; Zuo, X.; Li, J.; Wang, J.; Liu, H.; Hwang, M. T.; Chao, J.; Su, S.; Wang, L. Shi, J.; Wang, L; Huang, W.; Lai, R.; Fan, C. Nano Lett. 2017, 17, 5193.  doi: 10.1021/acs.nanolett.7b01006

    101. [101]

      Zhou, G.; Lin, M.; Song, P.; Chen, X.; Chao, J.; Wang, L.; Huang, Q.; Huang, W.; Fan, C.; Zuo, X. Anal. Chem. 2014, 86, 7843.  doi: 10.1021/ac502276w

    102. [102]

      Feng, L.; Chen, Y.; Ren, J.; Qu, X. Biomaterials 2011, 32, 2930.  doi: 10.1016/j.biomaterials.2011.01.002

    103. [103]

      Xie, Q.; Tan, Y.; Guo, Q.; Wang, K.; Yuan, B.; Wan, J.; Zhao, X. Anal. Methods 2014, 6, 6809.  doi: 10.1039/C4AY01213E

    104. [104]

      Motaghed Mazhabi, R.; Ge, L.; Jiang, H.; Wang, X. J. Mater. Chem. B 2018, 6, 5039.  doi: 10.1039/C8TB01067F

  • 加载中
    1. [1]

      Chang LiuTao WuLijiao DengXuzi LiXin FuShuzhen LiaoWenjie MaGuoqiang ZouHai Yang . Programmed DNA walkers for biosensors. Chinese Chemical Letters, 2024, 35(9): 109307-. doi: 10.1016/j.cclet.2023.109307

    2. [2]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    3. [3]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    4. [4]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    5. [5]

      Yang QinJiangtian LiXuehao ZhangKaixuan WanHeao ZhangFeiyang HuangLimei WangHongxun WangLongjie LiXianjin Xiao . Toeless and reversible DNA strand displacement based on Hoogsteen-bond triplex. Chinese Chemical Letters, 2024, 35(5): 108826-. doi: 10.1016/j.cclet.2023.108826

    6. [6]

      Xiaohong WenMei YangLie LiMingmin HuangWei CuiSuping LiHaiyan ChenChen LiQiuping Guo . Enzymatically controlled DNA tetrahedron nanoprobes for specific imaging of ATP in tumor. Chinese Chemical Letters, 2024, 35(8): 109291-. doi: 10.1016/j.cclet.2023.109291

    7. [7]

      Jingwen ZhaoJianpu TangZhen CuiLimin LiuDayong YangChi Yao . A DNA micro-complex containing polyaptamer for exosome separation and wound healing. Chinese Chemical Letters, 2024, 35(9): 109303-. doi: 10.1016/j.cclet.2023.109303

    8. [8]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    9. [9]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    10. [10]

      Tian FengYun-Ling GaoDi HuKe-Yu YuanShu-Yi GuYao-Hua GuSi-Yu YuJun XiongYu-Qi FengJie WangBi-Feng Yuan . Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(8): 109259-. doi: 10.1016/j.cclet.2023.109259

    11. [11]

      Zhe-Han YangJie YinLei XinYuanfang LiYijie HuangRuo YuanYing Zhuo . Research advancement of DNA-based intelligent hydrogels: Manufacture, characteristics, application of disease diagnosis and treatment. Chinese Chemical Letters, 2024, 35(10): 109558-. doi: 10.1016/j.cclet.2024.109558

    12. [12]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    13. [13]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    14. [14]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    15. [15]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    16. [16]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    17. [17]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    18. [18]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    19. [19]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    20. [20]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

Metrics
  • PDF Downloads(10)
  • Abstract views(1599)
  • HTML views(326)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return