Citation: Yu Jun, Yang Yusen, Wei Min. Preparation and Catalytic Performance of Supported Catalysts Derived from Layered Double Hydroxides[J]. Acta Chimica Sinica, ;2019, 77(11): 1129-1139. doi: 10.6023/A19070260 shu

Preparation and Catalytic Performance of Supported Catalysts Derived from Layered Double Hydroxides

  • Corresponding author: Yang Yusen, 2016400160@mail.buct.edu.cn Wei Min, weimin@mail.buct.edu.cn
  • Received Date: 11 July 2019
    Available Online: 4 November 2019

    Fund Project: the Fundamental Research Funds for the Central Universities XK1802-6the National Natural Science Foundation of China 21521005the National Key Research and Development Program 2017YFA0206804the National Natural Science Foundation of China 21871021Project supported by the National Natural Science Foundation of China (Nos. 21871021, 21521005), the National Key Research and Development Program (No. 2017YFA0206804), and the Fundamental Research Funds for the Central Universities (Nos. buctylkxj01, XK1802-6)the Fundamental Research Funds for the Central Universities buctylkxj01

Figures(10)

  • Supported catalysts have been widely used in a large variety of industrial processes, including ammonia synthesis, energy conversion and fine chemical synthesis. Layered double hydroxides (LDHs) are a class of two-dimensional functional anionic materials. By virtue of the unique structural characteristics (e.g., tunability of host layers, high dispersion of metal cations and structure topological transformation), LDHs have shown potential applications in heterogeneous catalysis as precursors or supports. In this review, high-performance monometallic or bimetallic supported catalysts by using LDHs as supports/precursors, or by utilizing mixed metal oxides (MMO) as supports via topotactic transformation from LDHs is highlighted. Their recent progresses in electrocatalysis, oxidative dehydrogenation, selective hydrogenation and syngas conversion reaction are reviewed. In the final section, future opportunities and challenges in the preparation of LDHs-based catalysts are discussed, and some strategies to resolve these critical problems are further proposed.
  • 加载中
    1. [1]

      White, R. J.; Rafael, L.; Budarin, V. L.; Clark, J. H.; Macquarrie, D. J. Chem. Soc. Rev. 2009, 38, 481.  doi: 10.1039/B802654H

    2. [2]

      Wang, Q.; O'Hare, D. Chem. Rev. 2012, 112, 4124.  doi: 10.1021/cr200434v

    3. [3]

      Yu, J.; Wang, Q.; O'Hare, D.; Sun, L. Chem. Soc. Rev. 2017, 46, 5950.  doi: 10.1039/C7CS00318H

    4. [4]

      Xu, M.; Wei, M. Adv. Funct. Mater. 2018, 28, 1802943.  doi: 10.1002/adfm.201802943

    5. [5]

      Jia, Y.; Wang, H.; Zhao, X.; Liu, X.; Wang, Y.; Fan, Q.; Zhou, J. Acta Chim. Sinica 2015, 73, 1207.  doi: 10.3866/PKU.WHXB201504142
       

    6. [6]

      Fan, G.; Li, F.; Evans, D. G.; Duan, X. Chem. Soc. Rev. 2014, 43, 7040.  doi: 10.1039/C4CS00160E

    7. [7]

      Li, T.; Zhao, J.; Li, Y.; Quan, Z.; Xu, J. Acta Chim. Sinica 2017, 75, 485.
       

    8. [8]

      Meng, X.; Yang, Y.; Chen, L.; Xu, M.; Zhang, X.; Wei, M. ACS Catal. 2019, 9, 4226.  doi: 10.1021/acscatal.9b00238

    9. [9]

      Gao, Z.; Liu, F. Q.; Wang, L.; Luo, F. Inorg. Chem. 2019, 58, 3247.  doi: 10.1021/acs.inorgchem.8b03327

    10. [10]

      Xia, C.; Gao, R.; Li, K.; Yang, Y.; Lin, Y.; Yan, D. Chin. J. Chem. 2017, 35, 1701.  doi: 10.1002/cjoc.201700136

    11. [11]

      Chen, H.; Huang, S.; Zhang, Z.; Liu, Y.; Wang, X. Acta Chim. Sinica 2017, 75, 560.  doi: 10.11862/CJIC.2017.075
       

    12. [12]

      Wang, N.; Pang, H.; Yu, S.; Gu, P.; Song, S.; Wang, H.; Wang, X. Acta Chim. Sinica 2019, 77, 143.
       

    13. [13]

      Bing, W.; Zheng, L.; He, S.; Rao, D.; Xu, M.; Zheng, L.; Wang, B.; Wang, Y.; Wei, M. ACS Catal. 2018, 8, 656.  doi: 10.1021/acscatal.7b03022

    14. [14]

      Yang, Y.; Chen, L.; Chen, Y.; Liu, W.; Feng, H.; Wang, B.; Zhang, X.; Wei, M. Green. Chem. 2019, DOI:10.1039/C9GC01119F.  doi: 10.1039/C9GC01119F

    15. [15]

      Zhou, J.; Yang, Y.; Li, C.; Zhang, S.; Chen, Y.; Shi, S.; Wei, M. J. Mater. Chem. A 2016, 4, 12825.  doi: 10.1039/C6TA04542A

    16. [16]

      Feng, J.; He, Y.; Liu, Y.; Du, Y.; Li, D. Chem. Soc. Rev. 2015, 44, 5291.  doi: 10.1039/C5CS00268K

    17. [17]

      Yan, K.; Liu, Y.; Lu, Y.; Chai, J.; Sun, L. Catal. Sci. Technol. 2017, 7, 1622.  doi: 10.1039/C7CY00274B

    18. [18]

      Li, X.; Jiang, P.; Lu, Y.; Zhang, W.; Dong, Y. Acta Chim. Sinica 2012, 70, 544.
       

    19. [19]

      Sun, K.; Gao, X.; Bai, Y.; Tan, M.; Yang, G.; Tan, Y. Catal. Sci. Technol. 2018, 8, 3936.  doi: 10.1039/C8CY01074A

    20. [20]

      Wang, L.; Yu, Q.; Feng, C.; Zhang, Y.; Hu, J. Chin. J. Org. Chem. 2019, 39, 1787.
       

    21. [21]

      Gao, X.; Zhou, Y.; Jing, F.; Luo, J.; Huang, Q.; Chu, W. Chin. J. Chem. 2017, 35, 1009.  doi: 10.1002/cjoc.201600865

    22. [22]

      Li, X.; Zhang, Q.; Wang, H.; Li, Y. Chin. J. Chem. 2017, 35, 196.  doi: 10.1002/cjoc.201600667

    23. [23]

      He, S.; Li, C.; Chen, H.; Su, D.; Zhang, B.; Cao, X.; Wang, B.; Wei, M.; Evans, D. G.; Duan, X. Chem. Mater. 2013, 25, 1040.  doi: 10.1021/cm303517z

    24. [24]

      Chen, H.; He, S.; Cao, X.; Zhang, S.; Xu, M.; Pu, M.; Su, D.; Wei, M.; Evans, D. G.; Duan, X. Chem. Mater. 2016, 28, 4751.  doi: 10.1021/acs.chemmater.6b01784

    25. [25]

      Gao, Z.; Liu, F.; Wang, L.; Luo, F. Appl. Surf. Sci. 2019, 480, 548.  doi: 10.1016/j.apsusc.2019.02.219

    26. [26]

      Wang, Y.; Chao, X.; Zhang, Z.; Liu, D.; Ru, C.; Wang, S. Adv. Funct. Mater. 2018, 28, 1703363.  doi: 10.1002/adfm.201703363

    27. [27]

      Zhao, Y.; Chen, G.; Bian, T.; Zhou, C.; Waterhouse, G. I.; Wu, L. Z.; Tung, C. H.; Smith, L. J.; O'Hare, D.; Zhang, T. Adv. Mater. 2016, 27, 7823.

    28. [28]

      Chen, Y.; Li, C.; Zhou, J.; Zhang, S.; Rao, D.; He, S.; Wei, M.; Evans, D. G.; Duan, X. ACS Catal. 2015, 5, 5756.  doi: 10.1021/acscatal.5b01429

    29. [29]

      Li, C.; Dou, Y.; Liu, J.; Chen, Y.; He, S.; Wei, M.; Evans, D. G.; Duan, X. Chem. Commun. 2013, 49, 9992.  doi: 10.1039/c3cc45697h

    30. [30]

      Zhang, S.; Fan, G.; Feng, L. Green Chem. 2013, 15, 2389.  doi: 10.1039/c3gc40658j

    31. [31]

      Zhou, L.; Shao, M.; Zhang, C.; Zhao, J.; He, S.; Rao, D.; Wei, M.; Evans, D. G.; Duan, X. Adv. Mater. 2017, 29, 1604080.  doi: 10.1002/adma.201604080

    32. [32]

      Zhang, F.; Zhao, X.; Feng, C.; Bo, L.; Tao, C.; Wei, L.; Lei, X.; Xu, S. ACS Catal. 2011, 1, 232.  doi: 10.1021/cs100089v

    33. [33]

      Liu, Y.; He, Y.; Zhou, D.; Feng, J.; Li, D. Catal. Sci. Technol. 2016, 6, 3027.  doi: 10.1039/C5CY01516B

    34. [34]

      Zhu, Y.; An, Z.; He, J. J. Catal. 2016, 341, 44.  doi: 10.1016/j.jcat.2016.06.004

    35. [35]

      Wang, Z.; Xu, S. M.; Xu, Y.; Tan, L.; Wang, X.; Zhao, Y.; Duan, H.; Song, Y. F. Chem. Sci. 2019, 10, 378.  doi: 10.1039/C8SC04480E

    36. [36]

      Li, C.; Wei, M.; Evans, D. G.; Duan, X. Small 2014, 10, 4469.  doi: 10.1002/smll.201401464

    37. [37]

      Xu, M.; He, S.; Chen, H.; Cui, G.; Zheng, L.; Wang, B.; Wei, M. ACS Catal. 2017, 7, 7600.  doi: 10.1021/acscatal.7b01951

    38. [38]

      Liu, N.; Xu, M.; Yang, Y.; Zhang, S.; Zhang, J.; Wang, W.; Zheng, L.; Hong, S.; Wei, M. ACS Catal. 2019, 9, 2707.  doi: 10.1021/acscatal.8b04913

    39. [39]

      Clarke, J. B.; Hastie, J. W.; Kihlborg, L. H. E.; Metselaar, R.; Thackeray, M. M. Pure Appl. Chem. 1994, 66, 577.  doi: 10.1351/pac199466030577

    40. [40]

      Valente, J. S.; Rodriguez-Gattorno, G.; Valle-Orta, M.; Torres-Garcia, E. Mater. Chem. Phys. 2012, 133, 621.  doi: 10.1016/j.matchemphys.2012.01.026

    41. [41]

      Ferreira, O. P.; Alves, O. L.; Gouveia, D. X.; Souza Filho, A. G.; de Paiva, J. A. C.; Filho, J. M. J. Solid. State. Chem. 2004, 177, 3058.  doi: 10.1016/j.jssc.2004.04.030

    42. [42]

      Zhao, X.; Zhang, F.; Xu, S.; Evans, D. G.; Duan, X. Chem. Mater. 2010, 22, 3933.  doi: 10.1021/cm100383d

    43. [43]

      He, S.; Zhang, S.; Lu, J.; Zhao, Y.; Ma, J.; Wei, M.; Evans, D. G.; Duan, X. Chem. Commun. 2011, 47, 10797.  doi: 10.1039/c1cc14360c

    44. [44]

      Meng, Q.; Yan, H. Mol. Simul. 2017, 43, 1338.  doi: 10.1080/08927022.2017.1362107

    45. [45]

      Costa, D. G.; Rocha, A. B.; Souza, W. F.; Chiaro, S. S. X.; Leit o, A. A. J. Phys. Chem. C 2012, 116, 13679.  doi: 10.1021/jp303529y

    46. [46]

      Zhang, S. T.; Dou, Y.; Zhou, J.; Pu, M.; Yan, H.; Wei, M.; Evans, D. G.; Duan, X. ChemPhysChem 2016, 17, 2754.  doi: 10.1002/cphc.201600354

    47. [47]

      He, S.; An, Z.; Wei, M.; Evans, D. G.; Duan, X. Chem. Commun. 2013, 49, 5912.  doi: 10.1039/c3cc42137f

    48. [48]

      Yan, H.; Lu, J.; Wei, M.; Ma, J.; Li, H.; He, J.; Evans, D. G.; Duan, X. J. Mol. Struct.:Theochem. 2008, 866, 34.  doi: 10.1016/j.theochem.2008.06.031

    49. [49]

      He, Y.; Fan, J.; Feng, J.; Luo, C.; Yang, P.; Li, D. J. Catal. 2015, 331, 118.  doi: 10.1016/j.jcat.2015.08.012

    50. [50]

      Tongsakul, D.; Nishimura, S.; Ebitani, K. ACS Catal. 2013, 3, 2199.  doi: 10.1021/cs400458k

    51. [51]

      Francová, D.; Tanchoux, N.; Gérardin, C.; Trens, P.; Prinetto, F.; Ghiotti, G.; Tichit, D.; Coq, B. Microporous Mesoporous Mater. 2007, 99, 118.  doi: 10.1016/j.micromeso.2006.07.038

    52. [52]

      Wang, L.; Zhang, J.; Zhu, Y.; Xu, S.; Wang, C.; Bian, C.; Meng, X.; Xiao, F.-S. ACS Catal. 2017, 7, 7461.  doi: 10.1021/acscatal.7b01947

    53. [53]

      Sun, T.; Fan, G.; Li, F. Ind. Eng. Chem. Res. 2013, 52, 5538.  doi: 10.1021/ie3032795

    54. [54]

      Zhao, M. Q.; Zhang, Q.; Zhang, W.; Huang, J. Q.; Zhang, Y.; Su, D. S.; Wei, F. J. Am. Chem. Soc. 2010, 132, 14739.  doi: 10.1021/ja106421g

    55. [55]

      Gao, W.; Zhao, Y.; Chen, H.; Chen, H.; Li, Y.; He, S.; Zhang, Y.; Wei, M.; Evans, D. G.; Duan, X. Green Chem. 2015, 17, 1525.  doi: 10.1039/C4GC01633E

    56. [56]

      Wu, J.; Gao, G.; Li, J.; Sun, P.; Long, X.; Li, F. Appl. Catal., B 2017, 203, 227.  doi: 10.1016/j.apcatb.2016.10.038

    57. [57]

      Dung, N. T.; Tichit, D.; Chiche, B. H.; Coq, B. Appl. Catal., A 1998, 169, 179.  doi: 10.1016/S0926-860X(98)00006-4

    58. [58]

      Koike, M.; Li, D.; Nakagawa, Y.; Tomishige, K. ChemSusChem 2012, 5, 2312.  doi: 10.1002/cssc.201200507

    59. [59]

      Li, C.; Chen, Y.; Zhang, S.; Zhou, J.; Wang, F.; He, S.; Wei, M.; Evans, D. G.; Duan, X. ChemCatChem 2014, 6, 824.  doi: 10.1002/cctc.201300813

    60. [60]

      Dresselhaus, M. S.; Thomas, I. L. Nature 2001, 414, 332.  doi: 10.1038/35104599

    61. [61]

      Jingshan, L.; Jeong-Hyeok, I.; Mayer, M. T.; Marcel, S.; Mohammad Khaja, N.; Nam-Gyu, P.; S David, T.; Jin, F. H.; Michael, G. T. Science 2014, 345, 1593.  doi: 10.1126/science.1258307

    62. [62]

      Wang, Q.; Shang, L.; Shi, R.; Zhang, X.; Waterhouse, G. I. N.; Wu, L.-Z.; Tung, C.-H.; Zhang, T. Nano Energy 2017, 40, 382.  doi: 10.1016/j.nanoen.2017.08.040

    63. [63]

      Wang, Q.; Shang, L.; Shi, R.; Zhang, X.; Zhao, Y.; Waterhouse, G. I. N.; Wu, L.-Z.; Tung, C.-H.; Zhang, T. Adv. Energy Mater. 2017, 7, 1700467.  doi: 10.1002/aenm.201700467

    64. [64]

      Qiao, B.; Wang, A.; Yang, X.; Allard, L. F.; Jiang, Z.; Cui, Y.; Liu, J.; Li, J.; Zhang, T. Nat. Chem. 2011, 3, 634.  doi: 10.1038/nchem.1095

    65. [65]

      Zhu, C.; Fu, S.; Shi, Q.; Du, D.; Lin, Y. Angew. Chem., Int. Ed. 2017, 56, 13944.  doi: 10.1002/anie.201703864

    66. [66]

      Li, P.; Wang, M.; Duan, X.; Zheng, L.; Cheng, X.; Zhang, Y.; Kuang, Y.; Li, Y.; Ma, Q.; Feng, Z.; Liu, W.; Sun, X. Nat. Commun. 2019, 10, 1711.  doi: 10.1038/s41467-019-09666-0

    67. [67]

      Zhang, J.; Liu, J.; Xi, L.; Yu, Y.; Chen, N.; Sun, S.; Wang, W.; Lange, K. M.; Zhang, B. J. Am. Chem. Soc. 2018, 140, 3876.  doi: 10.1021/jacs.8b00752

    68. [68]

      Zhao, Y.; Zhang, X.; Jia, X.; Waterhouse, G. I. N.; Shi, R.; Zhang, X.; Zhan, F.; Tao, Y.; Wu, L.-Z.; Tung, C.-H.; O'Hare, D.; Zhang, T. Adv. Energy Mater. 2018, 8, 1703585.  doi: 10.1002/aenm.201703585

    69. [69]

      Jia, X.; Zhang, X.; Zhao, J.; Zhao, Y.; Zhao, Y.; Waterhouse, G. I. N.; Shi, R.; Wu, L.-Z.; Tung, C.-H.; Zhang, T. J. Energy Chem. 2019, 34, 57.  doi: 10.1016/j.jechem.2018.09.011

    70. [70]

      Zhao, Y.; Jia, X.; Chen, G.; Shang, L.; Waterhouse, G. I.; Wu, L. Z.; Tung, C. H.; O'Hare, D.; Zhang, T. J. Am. Chem. Soc. 2016, 138, 6517.  doi: 10.1021/jacs.6b01606

    71. [71]

      He, L.; Huang, Y.; Wang, A.; Wang, X.; Chen, X.; Delgado, J. J.; Zhang, T. Angew. Chem., Int. Ed. 2012, 51, 6191.  doi: 10.1002/anie.201201737

    72. [72]

      Gao, W.; Li, C.; Chen, H.; Wu, M.; He, S.; Wei, M.; Evans, D. G.; Duan, X. Green Chem. 2014, 16, 1560.  doi: 10.1039/c3gc41939h

    73. [73]

      Zhao, J.; Shao, M.; Yan, D.; Zhang, S.; Lu, Z.; Li, Z.; Cao, X.; Wang, B.; Wei, M.; Evans, D. G.; Duan, X. J. Mater. Chem. A 2013, 1, 5840.  doi: 10.1039/c3ta10588a

    74. [74]

      Takato, M.; Yusuke, M.; Hisashi, F.; Tomoo, M.; Koichiro, J.; Kiyotomi, K. Angew. Chem., Int. Ed. 2008, 47, 138.  doi: 10.1002/anie.200703161

    75. [75]

      Mitran, G.; Cacciaguerra, T.; Loridant, S.; Tichit, D.; Marcu, I.-C. Appl. Catal., A 2012, 417~418, 153.

    76. [76]

      Wang, L.; Zhang, J.; Meng, X.; Zheng, D.; Xiao, F.-S. Catal. Today 2011, 175, 404.  doi: 10.1016/j.cattod.2011.03.040

    77. [77]

      He, Y.; Feng, J.; Brett, G. L.; Liu, Y.; Miedziak, P. J.; Edwards, J. K.; Knight, D. W.; Li, D.; Hutchings, G. J. ChemSusChem 2015, 8, 3314.  doi: 10.1002/cssc.201500503

    78. [78]

      Blanco, S.; Carrazán, S. R. G.; Rives, V. Appl. Catal., A 2008, 342, 93.  doi: 10.1016/j.apcata.2008.03.002

    79. [79]

      Pakhomov, N. A. Kinet. Catal. 2001, 42, 334.  doi: 10.1023/A:1010409230898

    80. [80]

      Sun, P.; Siddiqi, G.; Chi, M.; Bell, A. T. J. Catal. 2010, 274, 192.  doi: 10.1016/j.jcat.2010.06.017

    81. [81]

      Siddiqi, G.; Sun, P.; Galvita, V.; Bell, A. T. J. Catal. 2010, 274, 200.  doi: 10.1016/j.jcat.2010.06.016

    82. [82]

      Sun, P.; Siddiqi, G.; Vining, W. C.; Chi, M.; Bell, A. T. J. Catal. 2011, 282, 165.  doi: 10.1016/j.jcat.2011.06.008

    83. [83]

      Belskaya, O. B.; Stepanova, L. N.; Nizovskii, A. I.; Kalinkin, A. V.; Erenburg, S. B.; Trubina, S. V.; Kvashnina, K. O.; Leont'eva, N. N.; Gulyaeva, T. I.; Trenikhin, M. V.; Bukhtiyarov, V. I.; Likholobov, V. A. Catal. Today 2019, 329, 187.  doi: 10.1016/j.cattod.2018.11.081

    84. [84]

      Shimizu, K. I.; Kon, K.; Shimura, K.; Hakim, S. S. M. A. J. Catal. 2013, 300, 242.  doi: 10.1016/j.jcat.2013.01.005

    85. [85]

      Chen, H.; He, S.; Xu, M.; Wei, M.; Evans, D. G.; Duan, X. ACS Catal. 2017, 7, 2735.  doi: 10.1021/acscatal.6b03494

    86. [86]

      Mckenna, F. M.; Mantarosie, L.; Wells, R. P. K.; Hardacre, C.; Anderson, J. A. Catal. Sci. Technol. 2012, 2, 632.  doi: 10.1039/c2cy00479h

    87. [87]

      Kahsar, K. R.; Schwartz, D. K.; Will, J. M. J. Am. Chem. Soc. 2014, 136, 520.  doi: 10.1021/ja411973p

    88. [88]

      He, Y.; Liang, L.; Liu, Y.; Feng, J.; Ma, C.; Li, D. J. Catal. 2014, 309, 166.  doi: 10.1016/j.jcat.2013.09.017

    89. [89]

      Liu, Y. N.; Feng, J. T.; He, Y. F.; Sun, J. H.; Li, D. Q. Catal. Sci. Technol. 2015, 5, 1231.  doi: 10.1039/C4CY01160K

    90. [90]

      Liu, Y.; Zhao, J.; He, Y.; Feng, J.; Wu, T.; Li, D. J. Catal. 2017, 348, 135.  doi: 10.1016/j.jcat.2017.02.020

    91. [91]

      Stassi, J. P.; Zgolicz, P. D.; Miguel, S. R. D.; Scelza, O. A. J. Catal. 2013, 306, 11.  doi: 10.1016/j.jcat.2013.05.029

    92. [92]

      Ide, M. S.; Bing, H.; Neurock, M.; Davis, R. J. ACS Catal. 2012, 2, 671.  doi: 10.1021/cs200567z

    93. [93]

      Li, C.; Chen, Y.; Zhang, S.; Xu, S.; Zhou, J.; Wang, F.; Wei, M.; Evans, D. G.; Duan, X. Chem. Mater. 2013, 25, 3888.  doi: 10.1021/cm4021832

    94. [94]

      Yang, Y.; Rao, D.; Chen, Y.; Dong, S.; Wang, B.; Zhang, X.; Wei, M. ACS Catal. 2018, 8, 11749.  doi: 10.1021/acscatal.8b02755

    95. [95]

      Kong, X.; Zheng, R.; Zhu, Y.; Ding, G.; Zhu, Y.; Li, Y.-W. Green Chem. 2015, 17, 2504.  doi: 10.1039/C5GC00062A

    96. [96]

      Yan, K.; Chen, A. Energy 2013, 58, 357.  doi: 10.1016/j.energy.2013.05.035

    97. [97]

      Gupta, M.; Smith, M. L.; Spivey, J. J. ACS Catal. 2011, 1, 641.  doi: 10.1021/cs2001048

    98. [98]

      Spivey, J. J.; Egbebi, A. Chem. Soc. Rev. 2007, 36, 1514.  doi: 10.1039/b414039g

    99. [99]

      Gao, W.; Zhao, Y.; Liu, J.; Huang, Q.; He, S.; Li, C.; Zhao, J.; Wei, M. Catal. Sci. Technol. 2013, 3, 1324.  doi: 10.1039/c3cy00025g

    100. [100]

      Cao, A.; Liu, G.; Yue, Y.; Zhang, L.; Liu, Y. RSC Adv. 2015, 5, 58804.  doi: 10.1039/C5RA05190H

    101. [101]

      Wang, L.; Cao, A.; Liu, G.; Zhang, L.; Liu, Y. Appl. Surf. Sci. 2016, 360, 77.  doi: 10.1016/j.apsusc.2015.10.234

    102. [102]

      Cao, A.; Liu, G.; Wang, L.; Liu, J.; Yue, Y.; Zhang, L.; Liu, Y. J. Mater. Sci. 2016, 51, 5216.  doi: 10.1007/s10853-016-9823-9

    103. [103]

      Han, X.; Fang, K.; Zhou, J.; Zhao, L.; Sun, Y. J. Colloid. Interface Sci. 2016, 470, 162.  doi: 10.1016/j.jcis.2015.09.062

    104. [104]

      Ning, X.; An, Z.; He, J. J. Catal. 2016, 340, 236.  doi: 10.1016/j.jcat.2016.05.014

  • 加载中
    1. [1]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    2. [2]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    3. [3]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    4. [4]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    5. [5]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    6. [6]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    7. [7]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    8. [8]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    9. [9]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    10. [10]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    11. [11]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    12. [12]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    13. [13]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    14. [14]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    15. [15]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    16. [16]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    17. [17]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    18. [18]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    19. [19]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    20. [20]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

Metrics
  • PDF Downloads(59)
  • Abstract views(2224)
  • HTML views(590)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return