Citation: Zeng Jinyue, Wang Xiaoshuang, Zhang Xianzheng, Zhuo Renxi. Research Progress in Functional Metal-Organic Frameworks for Tumor Therapy[J]. Acta Chimica Sinica, ;2019, 77(11): 1156-1163. doi: 10.6023/A19070259 shu

Research Progress in Functional Metal-Organic Frameworks for Tumor Therapy

  • Corresponding author: Zhang Xianzheng, xz-zhang@whu.edu.cn
  • These authors contributed equally to this work
  • Received Date: 11 July 2019
    Available Online: 9 November 2019

    Fund Project: the National Natural Science Foundation of China 51833007Project supported by the China Postdoctoral Science Foundation (Nos. 2019TQ234, 2019M652693) and the National Natural Science Foundation of China (Nos. 51833007, 51690152)the National Natural Science Foundation of China 51690152the China Postdoctoral Science Foundation 2019TQ234the China Postdoctoral Science Foundation 2019M652693

Figures(7)

  • Malignant tumor is considered to be one of the most threatening diseases to human health because it is easy to metastasis and relapse, hard to cure with high mortality. Construction of anti-tumor drug delivery systems would effectively improve the therapeutic efficiency of traditional tumor therapy agents. However, the complicated tumor micro-environment as well as the individual diversity of tumor would lead to low efficiency or treatment failure. The conventional tumor treatments, such as chemotherapy, radiotherapy and surgery, have been unable to satisfy the demand for tumor therapy owing to the severe side effect and low therapeutic efficiency. In recent years, researchers have designed a lot of multifunctional nano-drug carriers for efficient tumor therapy with reduced side effects. Metal-organic frameworks (MOFs), a class of ordered porous crystal materials, have received significant research attention for their applications in gas adsorption and separation, catalysis, drug delivery, immobilized bio-macromolecules and tumor therapy. Due to tunable inorganic building blocks and organic linkers, MOFs can not only integrate drugs or photosensitizers into periodic arrays, but also possess large pore sizes and high surface areas for drug encapsulation. Currently, the biomedical research of MOFs mainly includes the preparation of multifunctional biocompatible nanomaterials through controllable synthesis and reasonable surface modification. MOFs based nanomaterials with desired physiological functions have been widely used for targeting tumor imaging and therapy by utilizing their unique physical and chemical properties. The recent progress on the bio-functionalization of MOFs, including new design strategies and application in tumor therapy is summarized. Particularly, the construction of MOF-based nanoplatforms for tumor therapy on the basis of biomedical polymer modified MOFs is also described in detail. The development trends of MOFs for biomedical application are also prospected. We believe that this work will offer a preliminary understanding to design MOF-based drug delivery systems and acquire the therapeutic strategies of MOF-based nano-medicine for future clinical biomedical applications.
  • 加载中
    1. [1]

      Hanahan, D.; Weinberg, R. A. Cell 2011, 144, 646.  doi: 10.1016/j.cell.2011.02.013

    2. [2]

      Emmenegger, U.; Kerbel, R. S. Nature 2010, 468, 637.  doi: 10.1038/468637a

    3. [3]

      Stark, G. R. Nature 1986, 324, 407.  doi: 10.1038/324407a0

    4. [4]

      (a) Meyer, R. A.; Sunshine, J. C.; Green, J. J. Trends Biotechnol. 2015, 33, 514. (b) Alvarez-Lorenzo, C.; Concheiro, A. Curr. Opin. Biotechnol. 2013, 24, 1167. (c) Carmona-Ribeiro, A. M. J. Liposome Res. 2007, 17, 165. (d) Qian, H.; Liu, B.; Jiang, X. Mater. Today Chem. 2018, 7, 53.

    5. [5]

      (a) Shi, J.; Votruba, A. R.; Farokhzad, O. C.; Langer, R. Nano Lett. 2010, 10, 3223. (b) Shi, J.; Philip, W. K.; Richard, W.; Omid, C. F. Nat. Rev. Cancer 2017, 1, 20.

    6. [6]

    7. [7]

    8. [8]

    9. [9]

      (a) Kitaura, R.; Akiyama, G.; Seki, K.; Kitagawa. S. Angew. Chem., Int. Ed. 2003, 42, 428. (b) Mulfort, K. L.; Hupp, J. T. J. Am. Chem. Soc. 2007, 129, 9604. (c) Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O'Keeffe, M.; Yaghi. O. M. Science 2002, 295, 469. (d) Rieter, W. J.; Pott, K. M.; Taylor, K. M. L.; Lin, W. B. J. Am. Chem. Soc. 2008, 130, 11584. (e) Horcajada, P.; Chalati, T.; Serre, C.; Gillet, B.; Sebrie, C.; Baati, T.; Eubank, J. F.; Heurtaux, D.; Clayette, P.; Kreuz, C.; Chang, J. S.; Hwang, Y. K.; Marsaud, V.; Bories, P. N.; Cynober, L.; Gil, S.; Ferey, G.; Couvreur, P.; Gref, R. Nat. Mater. 2010, 9, 172.

    10. [10]

      (a) Tranchemontagne, D. J.; Mendoza-Cortes, J. L.; O'Keeffe, M.; Yaghi, O. M. Chem. Soc. Rev. 2009, 38, 1257. (b) Shekhah, O.; Wang, H.; Paradinas, M.; Ocal, C.; Schupbach, B.; Terfort, A.; Zacher, D.; Fischer, R. A.; Woll, C. Nat. Mater. 2009, 8, 481. (c) Zeng, J. Y.; Zhang, M. K.; Peng, M. Y.; Gong, D.; Zhang, X. Z. Adv. Funct. Mater. 2018, 28, 1705451. (d) Shieh, F. K.; Wang, S. C.; Yen, C. I.; Wu, C. C.; Dutta, S.; Chou, L. Y.; Morabito, J. V.; Hu, P.; Hsu, M. H.; Wu, K. C. W.; Tsung, C. K. J. Am. Chem. Soc. 2015, 137, 4276.

    11. [11]

    12. [12]

      (a) Burtch, N. C.; Jasuja, H.; Walton, K. S. Chem. Rev. 2014, 114, 10575. (b) Zeng, J. Y.; Wang, X. S.; Zhang, M. K.; Li, Z. H.; Gong, D.; Pan, P.; Huang, L.; Cheng, S. X.; Cheng, H.; Zhang, X. Z. ACS Appl. Mater. Interfaces 2017, 9, 43143.

    13. [13]

      (a) Zeng, J. Y.; Wang, X. S.; Qi, Y. D.; Yu, Y.; Zeng, X.; Zhang, X. Z. Angew. Chem., Int. Ed. 2019, 131, 5748. (b) Farha, O. K.; Hupp, J. T. Acc. Chem. Res. 2010, 43, 1166.

    14. [14]

      Rocca, J. D.; Liu, D. M.; Lin, W. B. Acc. Chem. Res. 2011, 44, 957.  doi: 10.1021/ar200028a

    15. [15]

      Zhou, H. C.; Long, J. R.; Yaghi, O. M. Chem. Rev. 2012, 112, 673.  doi: 10.1021/cr300014x

    16. [16]

      Zeng, J. Y. Ph.D. Dissertation, Wuhan University, Wuhan, 2018.

    17. [17]

      (a) Taylor-Pashow, K. M. L.; Della Rocca, J.; Xie, Z.; Tran. S.; Lin, W. B. J. Am. Chem. Soc. 2009, 131, 14261. (b) Bellido, E.; Hidalgo, T.; Lozano, M. V.; Guillevic, M.; Simon-Vazquez, R.; Santander-Ortega, M. J.; Gonzalez-Fernandez, A.; Serre, C.; Alonso, M. J.; Horcajada, P. Adv. Healthcare Mater. 2015, 4, 1246.

    18. [18]

      (a) Furukawa, S.; Reboul, J.; Diring, S.; Sumida, K.; Kitagawa, S. Chem. Soc. Rev. 2014, 43, 5700. (b) Horcajada, P.; Gref, R.; Baati, T.; Allan, P. K.; Maurin, G.; Couvreur, P.; Férey, G.; Morris, R. E.; Serre, C. Chem. Rev. 2012, 112, 1232. (c) Morris, W.; Doonan, C. J.; Furukawa, H.; Banerjee, R.; Yaghi, O. M. J. Am. Chem. Soc. 2008, 130, 12626.

    19. [19]

      Chen, Z. X.; Liu, M. D.; Zhang, M. K.; Wang, S. B.; Xu, Lu.; Li, C. X.; Gao, F.; Xie, B. R.; Zhong, Z. L.; Zhang, X. Z. Adv. Funct. Mater. 2018, 28, 1803498.  doi: 10.1002/adfm.201803498

    20. [20]

      (a) Wang, X. S.; Zeng, J. Y.; Zhang, M. K.; Zeng, X.; Zhang, X. Z. Adv. Funct. Mater. 2018, 28, 1801783. (b) He, Y.; Xu, J.; Sun, X.; Ren, X.; Maharjan, A.; York, P.; Su, Y.; Li, H.; Zhang, J. Theranostics 2019, 9, 2489.

    21. [21]

      Chen, W. H.; Liao, W. C.; Sohn, Y. S.; Fadeev, M.; Cecconello, A.; Nechushtai, R.; Willner, I. Adv. Funct. Mater. 2018, 28, 1705137.  doi: 10.1002/adfm.201705137

    22. [22]

      Zeng, J. Y.; Zou, M. Z.; Zhang, M. K.; Wang, X. S.; Zeng, X.; Cong, H. J.; Zhang, X. Z. ACS Nano 2018, 12, 4630.  doi: 10.1021/acsnano.8b01186

    23. [23]

      (a) Liang, W. B.; Xu, H. S.; Carraro, S.; Maddigan, N. K.; Li, Q. W.; Bell, S. G.; Huang, D. M.; Tarzia, A.; Solomon, M. B.; Amenitsch, H.; Vaccari, L.; Sumby, C. J.; Falcaro, P.; Doonan, C. J. J. Am. Chem. Soc. 2019, 141, 2348. (b) Zhang, J. P.; Zhu, A. X.; Lin, R. B.; Qi, X. L.; Chen, X. M. Adv. Mater. 2011, 23, 1268.

    24. [24]

      (a) Chen, W. H.; Vazquez-González, M.; Zoabi, A.; Abu-Reziq, R.; Willner, I. Nat. Catal. 2018, 1, 689. (b) Liang, K.; Ricco, R.; Doherty, C. M.; Styles, M. J.; Bell, S.; Kirby, N.; Mudie, S.; Haylock, D.; Hill, A. J.; Doonan, C. J.; Falcaro, P. Nat. Commun. 2015, 6, 7240.

    25. [25]

      Peng, S.; Bie, D. L.; Sun, Y. Z. S.; Liu, M.; Cong, H. J.; Zhou, W. T.; Xia, Y. C.; Tang, H.; Deng, H. X.; Zhou, X. Nat. Commun. 2018, 9, 1293.  doi: 10.1038/s41467-018-03650-w

    26. [26]

      Wan, S. S.; Zeng, J. Y.; Cheng, H.; Zhang, X. Z. Biomaterials 2018, 185, 51.  doi: 10.1016/j.biomaterials.2018.09.004

    27. [27]

      Anderson, S. L.; Boyd, P. G.; Gładysiak, A.; Nguyen, T. N.; Palgrave, R. G.; Kubicki, D.; Emsley, L.; Bradshaw, D.; Rosseinsky, M. J.; Smit, B.; Stylianou, K. C. Nat. Commun. 2019, 10, 1612.  doi: 10.1038/s41467-019-09486-2

    28. [28]

      Du, Y. J.; Gao, J.; Zhou, L. Y.; Ma, L.; He, Y.; Zheng, X. F.; Huang, Z. H.; Jiang, Y. J. Adv. Sci. 2019, 6, 1801684.  doi: 10.1002/advs.201801684

    29. [29]

      Wan, S. S.; Zhang, L.; Zhang, X. Z. ACS Cent. Sci. 2019, 5, 327.  doi: 10.1021/acscentsci.8b00822

    30. [30]

      Yang, Y.; Zhu, W.; Dong, Z.; Chao, Z.; Xu, L.; Chen, M.; Liu, Z. Adv. Mater. 2017, 29, 1703588.  doi: 10.1002/adma.201703588

    31. [31]

      (a) Zhu, J. Y.; Zheng, D. W.; Zhang, M. K.; Yu, W. Y.; Qiu, W, X.; Hu, J. J.; Feng, J.; Zhang, X. Z. Nano Lett. 2016, 16, 5895. (b) Zou, M. Z.; Liu, W. L.; Li, C. X.; Zheng, D. W.; Zeng, J. Y.; Gao, F.; Ye, J. J.; Zhang, X. Z. Small 2018, 14, 1801120. (c) Li, S. Y.; Xie, B. R.; Cheng, H.; Li, C. X.; Zhang, M. K.; Qiu, W. X.; Liu, W. L.; Wang, X. S.; Zhang, X. Z. Biomaterials 2018, 151, 1.

    32. [32]

      (a) Cheng, H.; Zhu, J. Y.; Li, S. Y.; Zeng, J. Y.; Lei, Q.; Chen, K. W.; Zhang, C.; Zhang, X. Z. Adv. Funct. Mater. 2016, 26, 7847. (b) Li, S. Y.; Cheng, H.; Qiu, W. X.; Zhang, L.; Wan, S. S.; Zeng, J. Y.; Zhang, X. Z. Biomaterials 2017, 142, 149.

    33. [33]

      Liu, W. L.; Zou, M. Z.; Liu, T.; Zeng, J. Y.; Li, X.; Yu, W. Y.; Li, C. X.; Song, W.; Feng, J.; Zhang, X. Z. Adv. Mater. 2019, 31, 1900499.  doi: 10.1002/adma.201900499

    34. [34]

      Zhang, C.; Zhang, L.; Wu, W.; Gao, F.; Li, R. Q.; Song, W.; Zhuang, Z. N.; Liu, C. J.; Zhang, X. Z. Adv. Mater. 2019, 31, 1901179.  doi: 10.1002/adma.201901179

    35. [35]

      Li, S. Y.; Cheng, H.; Xie, B. R.; Qiu, W. X.; Zeng, J. Y.; Li, C. X.; Zhang, L.; Liu, W. L.; Zhang, X. Z. ACS Nano 2017, 11, 7006.  doi: 10.1021/acsnano.7b02533

  • 加载中
    1. [1]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    2. [2]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    3. [3]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    4. [4]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    5. [5]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    6. [6]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    7. [7]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    8. [8]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    9. [9]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    10. [10]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    11. [11]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    12. [12]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    13. [13]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    14. [14]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    15. [15]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    16. [16]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    17. [17]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    18. [18]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    19. [19]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    20. [20]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

Metrics
  • PDF Downloads(58)
  • Abstract views(2059)
  • HTML views(597)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return