Citation: Li Qi, Jia Yi, Li Junbai. Controlled Assembly of Chiral Structure of Diphenylalanine Peptide[J]. Acta Chimica Sinica, ;2019, 77(11): 1173-1176. doi: 10.6023/A19060241 shu

Controlled Assembly of Chiral Structure of Diphenylalanine Peptide

  • Corresponding author: Li Junbai, jbli@iccas.ac.cn
  • Received Date: 28 June 2019
    Available Online: 16 November 2019

    Fund Project: the National Natural Science Foundation of China 21872151Project supported by the National Natural Science Foundation of China (Nos. 21433010, 21872151, 21320102004)the National Natural Science Foundation of China 21433010the National Natural Science Foundation of China 21320102004

Figures(4)

  • Chirality is ubiquitous in nature and it plays an important role in both biological and material sciences. Inspired by nature, scientists have prepared various chiral structures or hybrid materials by self-assembly of polypeptides, amino acids, carbohydrates and their derivatives. These studies provide a good model for understanding of supramolecular chirality and mimicking the self-assembly of organisms. In the past decade, diphenylalanine (FF) and its derivatives have attracted great attentions and have been substantially studied. FF is derived from the core recognition motif of the Alzheimer's disease β-amyloid polypeptide, and it could readily self-assemble into nanotubes, nanowires, nanovesicles, nanofibers and microtubes. Moreover, the polymorphisms of FF-based assemblies can be easily manipulated by controlling the experimental conditions such as concentrations, solvents, pH and temperatures. However, there is few report on the chiral structures obtained from the self-assembly of FF and its derivatives. In this paper, we selected cationic diphenylalanine peptide (CDP) as the assembly units and have obtained CDP nanofibers and helical fibers in ethanol solution by controlling the aging time. Scanning electron microscope (SEM) and atomic force microscope (AFM) were used to characterize the morphologies of CDP assemblies. The mechanism for the formation of CDP nanofibers and helical fibers in ethanol solution was studied by infrared spectroscopy and circular dichroism spectroscopy. It was found that CDP was first assembled into nanofibers. With the increase of aging time, CDP nanofibers twisted and finally assembled into helical fibers similar to the ropes. Spectral data analysis showed that the transformation of nanofibers into helical fibers was mainly due to the strong electrostatic repulsion between positive charges in adjacent peptide molecules and the β-sheet secondary structure controlled by hydrogen bonding between peptide segments. This work realizes the regulation of supramolecular assembly structure by simply controlling the ripening time, and provides a simple and feasible method for the controlled preparation of supramolecular chiral assembly.
  • 加载中
    1. [1]

      Bada, J. L. Nature 1995, 374, 594.  doi: 10.1038/374594a0

    2. [2]

      Liu, M.; Zhang, L.; Wang, T. Chem. Rev. 2015, 115, 7304.  doi: 10.1021/cr500671p

    3. [3]

      Zhang, L.; Qin, L.; Wang, X. F.; Cao, H.; Liu, M. H. Adv. Mater. 2014, 26, 6959.  doi: 10.1002/adma.201305422

    4. [4]

      Cao, H.; Zhu, X.; Liu, M. Angew. Chem. Int. Ed. 2013, 52, 4122.  doi: 10.1002/anie.201300444

    5. [5]

      He, C. Q.; Han, Y. C.; Fan, Y. X.; Deng, M. L.; Wang, Y. L. Langmuir 2012, 28, 3391.  doi: 10.1021/la2046146

    6. [6]

      Huang, Z.; Che, S. Chem. Rec. 2015, 15, 665.  doi: 10.1002/tcr.201402096

    7. [7]

      Dong, S.; Feng, X.; Liu, X. Chem. Soc. Rev. 2018, 47, 8525.  doi: 10.1039/C7CS00792B

    8. [8]

      Xie, J.; Zhou, Q. Chin. Sci. Bull. 2015, 60, 2679.

    9. [9]

      Yan, X.; Zhu, P.; Li, J. Chem. Soc. Rev. 2010, 39, 1877.  doi: 10.1039/b915765b

    10. [10]

      Tao, K.; Makam, P.; Aizen, R.; Gazit, E. Science 2017, 358, eaam9756.  doi: 10.1126/science.aam9756

    11. [11]

      Wei, G.; Su, Z.; Reynolds, N. P.; Arosio, P.; Hamley, I. W.; Gazit, E.; Mezzenga, R. Chem. Soc. Rev. 2017, 46, 4661.  doi: 10.1039/C6CS00542J

    12. [12]

      Wang, J.; Liu, K.; Xing, R.; Yan, X. Chem. Soc. Rev. 2016, 45, 5589.  doi: 10.1039/C6CS00176A

    13. [13]

      Zong, Q.; Geng, H.; Wang, L.; Ye, L.; Zhang, A.; Shao, Z.; Feng, Z. Acta Chim. Sinica 2015, 73, 423.
       

    14. [14]

      Yan, X.; Li, J.; M hwald, H. Adv. Mater. 2011, 23, 2796.  doi: 10.1002/adma.201100353

    15. [15]

      Liu, K.; Yuan, C.; Zou, Q.; Xie, Z.; Yan, X. Angew. Chem. Int. Ed. 2017, 56, 7876.  doi: 10.1002/anie.201704678

    16. [16]

      Li, Q.; Jia, Y.; Dai, L.; Yang, Y.; Li, J. ACS Nano 2015, 9, 2689.  doi: 10.1021/acsnano.5b00623

    17. [17]

      Sun, B. B.; Li, Q.; Riegler, H.; Eickelmann, S.; Dai, L. R.; Yang, Y.; Perez-Garcia, R.; Jia, Y.; Chen, G. X.; Fei, J. B.; Holmberg, K.; Li, J. B. ACS Nano 2017, 11, 10489.  doi: 10.1021/acsnano.7b05800

    18. [18]

      Ma, H.; Fei, J.; Cui, Y.; Zhao, J.; Wang, A.; Li, J. Chem. Commun. 2013, 49, 9956.  doi: 10.1039/c3cc45514a

    19. [19]

      Ma, H.; Fei, J.; Li, Q.; Li, J. Small 2015, 11, 1787.  doi: 10.1002/smll.201402140

    20. [20]

      Wang, J.; Zou, Q.; Yan, X. Acta Chim. Sinica 2017, 75, 933.
       

    21. [21]

      Niu, D.; Ji, L.; Ouyang, G.; Liu, M. Chem. Commun. 2018, 54, 1137.  doi: 10.1039/C7CC09049H

    22. [22]

      Lamm, M. S.; Rajagopal, K.; Schneider, J. P.; Pochan, D. J. J. Am. Chem. Soc. 2005, 127, 16692.  doi: 10.1021/ja054721f

    23. [23]

      Barth, A.; Zscherp, C. Q. Rev. Biophys. 2002, 35, 369.  doi: 10.1017/S0033583502003815

    24. [24]

      Jackson, M.; Mantsch, H. H. Biochim. Biophys. Acta 1991, 1078, 231.  doi: 10.1016/0167-4838(91)90563-F

    25. [25]

      Sanchez de Groot, N.; Parella, T.; Aviles, F. X.; Vendrell, J.; Ventura, S. Biophys. J. 2007, 92, 1732.  doi: 10.1529/biophysj.106.096677

    26. [26]

      Li, Q.; Ma, H.; Wang, A.; Jia, Y.; Dai, L.; Li, J. Adv. Opt. Mater. 2015, 3, 194.  doi: 10.1002/adom.201400308

    27. [27]

      Yan, X. H.; Cui, Y.; He, Q.; Wang, K. W.; Li, J. B. Chem. Mater. 2008, 20, 1522.  doi: 10.1021/cm702931b

    28. [28]

      Guler, M. O.; Soukasene, S.; Hulvat, J. F.; Stupp, S. I. Nano Lett. 2005, 5, 249.  doi: 10.1021/nl048238z

    29. [29]

      Wang, M. N.; Han, Y. C.; Qiao, F. L.; Wang, Y. L. Soft Matter 2015, 11, 1517.  doi: 10.1039/C4SM02668C

    30. [30]

      Fu, Y.; Li, B.; Huang, Z.; Li, Y.; Yang, Y. Langmuir 2013, 29, 6013.  doi: 10.1021/la400910g

    31. [31]

      Sang, Y. T.; Duan, P. F.; Liu, M. H. Chem. Commun. 2018, 54, 4025.  doi: 10.1039/C8CC02130A

  • 加载中
    1. [1]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    2. [2]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    3. [3]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    4. [4]

      Haiying Wang Andrew C.-H. Sue . How to Visually Identify Homochiral Crystals. University Chemistry, 2024, 39(3): 78-85. doi: 10.3866/PKU.DXHX202309004

    5. [5]

      Keying Qu Jie Li Ziqiu Lai Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091

    6. [6]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    7. [7]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

    8. [8]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    9. [9]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    10. [10]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    11. [11]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    12. [12]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    13. [13]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    14. [14]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    15. [15]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    16. [16]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    17. [17]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    18. [18]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    19. [19]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    20. [20]

      Wenbing Hu Jin Zhu . Flipped Classroom Approach in Teaching Professional English Reading and Writing to Polymer Graduates. University Chemistry, 2024, 39(6): 128-131. doi: 10.3866/PKU.DXHX202310015

Metrics
  • PDF Downloads(12)
  • Abstract views(559)
  • HTML views(86)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return