Recent Advances in Enzymatic Catalysis for Preparation of High Value-Added Chemicals from Carbon Dioxide
- Corresponding author: Lou Wenyong, wylou@scut.edu.cn
Citation: Liang Shan, Zong Minhua, Lou Wenyong. Recent Advances in Enzymatic Catalysis for Preparation of High Value-Added Chemicals from Carbon Dioxide[J]. Acta Chimica Sinica, ;2019, 77(11): 1099-1114. doi: 10.6023/A19060240
Air Products and Chemicals, Inc., Carbon Dioxide Product Stewardship Summary, www.airproducts.com, 2018.
Lei, Z.; Xue, Y.; Chen, W.; Qiu, W.; Zhang, Y.; Horike, S.; Tang, L. Adv. Energy Mater. 2018, 8, 1801587.
doi: 10.1002/aenm.201801587
Zhang, Z.; Muschiol, J.; Huang, Y.; Sigurdardóttir, S. B.; von Solms, N.; Daugaard, A. E.; Wei, J.; Luo, J.; Xu, B.-H.; Zhang, S.; Pinelo, M. Green Chem. 2018, 20, 4339.
doi: 10.1039/C8GC02230E
Sultana, S.; Chandra Sahoo, P.; Martha, S.; Parida, K. RSC Adv. 2016, 6, 44170.
doi: 10.1039/C6RA05472B
Chang, S.-L.; Liang, F.; Yao, Y.-C.; Ma, W.-H.; Yang, B.; Dai, Y.-N. Acta Chim. Sinica 2018, 76, 515.
doi: 10.11862/CJIC.2018.038
Olivier, J. G. J.; Peters, J. A. H. W. Trends in global CO2 and total greenhouse gas emissions:2018 Report, PBL Netherlands Environmental Assessment Agency, The Hague, 2018, 3125, pp. 4~6.
Shi, J.; Jiang, Y.; Jiang, Z.; Wang, X.; Wang, X.; Zhang, S.; Han, P.; Yang, C. Chem. Soc. Rev. 2015, 44, 5981.
doi: 10.1039/C5CS00182J
Zhang, S.; Li, X.-D.; He, L.-N. Acta Chim. Sinica 2016, 74, 17.
Long, N.; Lee, J.; Koo, K.-K.; Luis, P.; Lee, M. Energies 2017, 10, 473.
doi: 10.3390/en10040473
Chang, X.; Wang, T.; Yang, P.; Zhang, G.; Gong, J. Adv. Mater. 2018, 31, 1804710.
Chen, Z.; Wang, X.; Liu, L. Chem. Rec. 2019, 19, 1272.
doi: 10.1002/tcr.201800100
Kuramochi, Y.; Ishitani, O.; Ishida, H. Coord. Chem. Rev. 2018, 373, 333.
doi: 10.1016/j.ccr.2017.11.023
Aresta, M.; Dibenedetto, A.; Quaranta, E. In Reaction Mechanisms in Carbon Dioxide Conversion, Vol. 9, Eds.: Aresta, M.; Dibenedetto, A.; Quaranta, E., Springer Berlin Heidelberg, Berlin, Heidelberg, 2016, pp. 347~371.
Mondal, B.; Song, J.; Neese, F.; Ye, S. Curr. Opin. Chem. Biol. 2015, 25, 103.
doi: 10.1016/j.cbpa.2014.12.022
Aresta, M.; Quaranta, E.; Liberio, R.; Dileo, C.; Tommasi, I. Tetrahedron 1998, 54, 8841.
doi: 10.1016/S0040-4020(98)00475-X
Obert, R.; Dave, B. C. J. Am. Chem. Soc. 1999, 121, 12192.
doi: 10.1021/ja991899r
Marpani, F.; Pinelo, M.; Meyer, A. S. Biochem. Eng. J. 2017, 127, 217.
doi: 10.1016/j.bej.2017.08.011
Fuchs, G. Annu. Rev. Microbiol. 2011, 65, 631.
doi: 10.1146/annurev-micro-090110-102801
Berg, I. A.; Kockelkorn, D.; Ramos-Vera, W. H.; Say, R.; Zarzycki, J.; Fuchs, G. In Carbon Dioxide as Chemical Feedstock, Vol. 3, Ed.: Aresta, M., WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2010, pp. 33~53.
Alissandratos, A.; Easton, C. J. Beilstein J. Org. Chem. 2015, 11, 2370.
doi: 10.3762/bjoc.11.259
Erb, T. J. Appl. Environ. Microbiol. 2011, 77, 8466.
doi: 10.1128/AEM.05702-11
Tabita, F. R.; Hanson, T. E.; Li, H.; Satagopan, S.; Singh, J.; Chan, S. Microbiol. Mol. Biol. Rev. 2007, 71, 576.
doi: 10.1128/MMBR.00015-07
Ljungdahl, L. G.; Wood, H. G. Annu. Rev. Microbiol. 1969, 23, 515.
doi: 10.1146/annurev.mi.23.100169.002503
Ragsdale, S. W.; Kumar, M.; Seravalli, J.; Qiu, D.; Spiro, T. D. In Microbial Growth on C1 Compounds, Eds.: Lidstrom, M. E.; Tabita, F. R., Springer, Dordrecht, 1996, pp. 191~196.
Ragsdale, S. W.; Pierce, E. Biochim. Biophys. Acta 2008, 1784, 1873.
doi: 10.1016/j.bbapap.2008.08.012
Gencic, S.; Duin, E. C.; Grahame, D. A. J. Biol. Chem. 2010, 285, 15450.
doi: 10.1074/jbc.M109.080994
Wang, H.-J.; Ni, J.; Zhang, Y.; Zhang, L.; Xin, Y.-Y. Microbiol. China 2013, 40, 304.
Scherf, U.; Buckel, W. Eur. J. Biochem. 1993, 215, 421.
doi: 10.1111/j.1432-1033.1993.tb18049.x
Berg, I. A.; Kockelkorn, D.; Buckel, W.; Fuchs, G. Science 2007, 318, 1782.
doi: 10.1126/science.1149976
Ishii, M.; Miyake, T.; Satoh, T.; Sugiyama, H.; Oshima, Y.; Kodama, T.; Igarashi, Y. Arch. Microbiol. 1996, 166, 368.
doi: 10.1007/BF01682981
Zarzycki, J.; Brecht, V.; Müller, M.; Fuchs, G. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 21317.
doi: 10.1073/pnas.0908356106
Patel, H. M.; Kraszewski, J. L.; Mukhopadhyay, B. J. Bacteriol. 2004, 186, 5129.
doi: 10.1128/JB.186.15.5129-5137.2004
Burgess, B. K.; Lowe, D. J. Chem. Rev. 1996, 96, 2983.
doi: 10.1021/cr950055x
Shah, V. K.; Brill, W. J. Proc. Natl. Acad. Sci., U. S. A. 1977, 74, 3249.
doi: 10.1073/pnas.74.8.3249
Yang, Z.-Y.; Danyal, K.; Seefeldt, L. C. In Nitrogen Fixation. Methods in Molecular Biology (Methods and Protocols), Vol. 766, Ed.: Ribbe, M. W., Humana Press, Heidelberg, 2011, pp. 9~29.
Rivera-Ortiz, J. M.; Burris, R. H. J. Bacteriol. 1975, 123, 537.
Lee, C. C.; Hu, Y.; Ribbe, M. W. Science 2010, 329, 642.
doi: 10.1126/science.1191455
Hu, Y.; Lee, C. C.; Ribbe, M. W. Science 2011, 333, 753.
doi: 10.1126/science.1206883
Yang, Z.-Y.; Moure, V. R.; Dean, D. R.; Seefeldt, L. C. Proc. Natl. Acad. Sci., U. S. A. 2012, 109, 19644.
doi: 10.1073/pnas.1213159109
Seefeldt, L. C.; Rasche, M. E.; Ensign, S. A. Biochemistry 1995, 34, 5382.
doi: 10.1021/bi00016a009
Zheng, Y.; Harris, D. F.; Yu, Z.; Fu, Y.; Poudel, S.; Ledbetter, R. N.; Fixen, K. R.; Yang, Z.-Y.; Boyd, E. S.; Lidstrom, M. E.; Seefeldt, L. C.; Harwood, C. S. Nat. Microbiol. 2018, 3, 281.
doi: 10.1038/s41564-017-0091-5
Rebelein, J. G.; Stiebritz, M. T.; Lee, C. C.; Hu, Y. Nat. Chem. Biol. 2016, 13, 147.
Khadka, N.; Dean, D. R.; Smith, D.; Hoffman, B. M.; Raugei, S.; Seefeldt, L. C. Inorg. Chem. 2016, 55, 8321.
doi: 10.1021/acs.inorgchem.6b00388
Lindskog, S. Inorg. Chim. Acta 1983, 79, 36.
Savile, C. K.; Lalonde, J. J. Curr. Opin. Biotechnol. 2011, 22, 818.
doi: 10.1016/j.copbio.2011.06.006
Smith, K. S.; Jakubzick, C.; Whittam, T. S.; Ferry, J. G. Proc. Natl. Acad. Sci., U. S. A. 1999, 96, 15184.
doi: 10.1073/pnas.96.26.15184
Cai, L.-X.; Chu, Y.-M.; Zhang, G.-Y. Chin. J. Biotech. 2019, 31, 1.
Lehtonen, J.; Shen, B.; Vihinen, M.; Casini, A.; Scozzafava, A.; Supuran, C.; Parkkila, A.-K.; Saarnio, J.; Kivel, A. J.; Waheed, A.; Sly, W.; Parkkila, S. J. Biol. Chem. 2004, 279, 2719.
doi: 10.1074/jbc.M308984200
Loferer, M. J.; Tautermann, C. S.; Loeffler, H. H.; Liedl, K. R. J. Am. Chem. Soc. 2003, 125, 8921.
doi: 10.1021/ja035072f
Shekh, A.; Kannan, K.; Mudliar, N. S.; Yadav, R.; Fulke, A.; Sivanesan, S. d.; Chakrabarti, T. Crit. Rev. Environ. Sci. Technol. 2011, 42, 1419.
Bond, G. M.; Stringer, J.; Brandvold, D. K.; Simsek, F. A.; Medina, M.-G.; Egeland, G. Energy Fuels 2001, 15, 309.
doi: 10.1021/ef000246p
Yadav, R. R.; Krishnamurthi, K.; Mudliar, S. N.; Devi, S. S.; Naoghare, P. K.; Bafana, A.; Chakrabarti, T. J. Basic Microbiol. 2014, 54, 472.
doi: 10.1002/jobm.201300849
Mirjafari, P.; Asghari, K.; Mahinpey, N. Ind. Eng. Chem. Res. 2007, 46, 921.
doi: 10.1021/ie060287u
Xiao, L.; Lian, B. Carbonates Evaporites 2016, 31, 39.
doi: 10.1007/s13146-015-0239-4
McQ Gould, S.; Tawfik, D. Biochemistry 2005, 44, 5444.
doi: 10.1021/bi0475471
Alvizo, O.; Nguyen, L. J.; Savile, C. K.; Bresson, J. A.; Lakhapatri, S. L.; Solis, E. O. P.; Fox, R. J.; Broering, J. M.; Benoit, M. R.; Zimmerman, S. A.; Novick, S. J.; Liang, J.; Lalonde, J. J. Proc. Natl. Acad. Sci., U. S. A. 2014, 111, 16436.
doi: 10.1073/pnas.1411461111
Yoshimoto, M.; Walde, P. World J. Microbiol. Biotechnol. 2018, 34, 151.
doi: 10.1007/s11274-018-2536-2
Liu, W.-F.; Wei, L.-N. J. Mol. Catal. 2016, 30, 182.
Yoshimoto, M.; Schweizer, T.; Rathlef, M.; Pleij, T.; Walde, P. ACS Omega 2018, 3, 10391.
doi: 10.1021/acsomega.8b01517
Maeshima, K.; Yoshimoto, M. Enzyme Microb. Technol. 2017, 105, 9.
doi: 10.1016/j.enzmictec.2017.06.002
Cui, J.-D.; Li, Y.; Ji, X.-Y.; Bian, H.-J.; Zhang, Y.-F.; Su, Z.-G.; Ma, G.-H.; Zhang, S.-P. Chem. J. Chin. Univ. 2014, 35, 1999.
doi: 10.7503/cjcu20140059
Bulushev, D. A.; Ross, J. R. H. ChemSusChem 2018, 11, 821.
doi: 10.1002/cssc.201702075
Kawanami, H.; Himeda, Y.; Laurenczy, G. Adv. Inorg. Chem. 2017, 70, 395.
doi: 10.1016/bs.adioch.2017.04.002
Castillo, R.; Oliva, M.; Martí, S.; Moliner, V. J. Phys. Chem. B 2008, 112, 10012.
doi: 10.1021/jp8025896
Neuhauser, W.; Steininger, M.; Haltrich, D.; Kulbe, K. D.; Nidetzky, B. Biotechnol. Bioeng. 1998, 60, 277.
doi: 10.1002/(SICI)1097-0290(19981105)60:3<277::AID-BIT2>3.0.CO;2-E
Dong, G.; Ryde, U. J. Biol. Inorg. Chem. 2018, 23, 1243.
doi: 10.1007/s00775-018-1608-y
Boyington, J. C.; Gladyshev, V. N.; Khangulov, S. V.; Stadtman, T. C.; Sun, P. D. Science 1997, 275, 1305.
doi: 10.1126/science.275.5304.1305
Schrapers, P.; Hartmann, T.; Kositzki, R.; Dau, H.; Reschke, S.; Schulzke, C.; Leimkühler, S.; Haumann, M. Inorg. Chem. 2015, 54, 3260.
doi: 10.1021/ic502880y
Mota, C. S.; Rivas, M. G.; Brondino, C. D.; Moura, I.; Moura, J. J. G.; González, P. J.; Cerqueira, N. M. F. S. A. J. Biol. Inorg. Chem. 2011, 16, 1255.
doi: 10.1007/s00775-011-0813-8
Dobbek, H. Coord. Chem. Rev. 2011, 255, 1104.
doi: 10.1016/j.ccr.2010.11.017
Parkinson, B. A.; Weaver, P. F. Nature 1984, 309, 148.
doi: 10.1038/309148a0
Lu, Y.; Jiang, Z.-Y.; Xu, S.-W.; Wu, H. Catal. Today 2006, 115, 263.
doi: 10.1016/j.cattod.2006.02.056
Yadav, R. K.; Baeg, J.-O.; Oh, G. H.; Park, N.-J.; Kong, K.-j.; Kim, J.; Hwang, D. W.; Biswas, S. K. J. Am. Chem. Soc. 2012, 134, 11455.
doi: 10.1021/ja3009902
Choe, H.; Joo, J. C.; Cho, D. H.; Kim, M. H.; Lee, S. H.; Jung, K. D.; Kim, Y. H. PLoS One 2014, 9, e103111.
doi: 10.1371/journal.pone.0103111
Yadav, R. K.; Baeg, J.-O.; Kumar, A.; Kong, K.-j.; Oh, G. H.; Park, N.-J. J. Mater. Chem. A 2014, 2, 5068.
doi: 10.1039/c3ta14442a
Woolerton, T. W.; Sheard, S.; Reisner, E.; Pierce, E.; Ragsdale, S. W.; Armstrong, F. A. J. Am. Chem. Soc. 2010, 132, 2132.
doi: 10.1021/ja910091z
Xu, C.-Y.; Lin, J.-Y.; Pan, F.-Q.; Den, B.-W.; Wang, Z.-H.; Zhou, J.-H.; Chen, Y.; Ma, J.-C.; Gu, Z.-E.; Zhang, Y.-W. Acta Chim. Sinica 2017, 75, 699.
doi: 10.11862/CJIC.2017.051
Jeoung, J.-H.; Martins, B. M.; Dobbek, H. In Metalloproteins: Methods and Protocols, Vol. 3, Ed.: Hu, Y., Springer, New York, 2019, pp. 37~54.
Appel, A. M.; Bercaw, J. E.; Bocarsly, A. B.; Dobbek, H.; DuBois, D. L.; Dupuis, M.; Ferry, J. G.; Fujita, E.; Hille, R.; Kenis, P. J. A.; Kerfeld, C. A.; Morris, R. H.; Peden, C. H. F.; Portis, A. R.; Ragsdale, S. W.; Rauchfuss, T. B.; Reek, J. N. H.; Seefeldt, L. C.; Thauer, R. K.; Waldrop, G. L. Chem. Rev. 2013, 113, 6621.
doi: 10.1021/cr300463y
Parkin, A.; Seravalli, J.; Vincent, K. A.; Ragsdale, S. W.; Armstrong, F. A. J. Am. Chem. Soc. 2007, 129, 10328.
doi: 10.1021/ja073643o
Jeoung, J.-H.; Dobbek, H. Science 2007, 318, 1461.
doi: 10.1126/science.1148481
Miyazaki, S.; Koga, Y.; Matsumoto, T.; Matsubara, K. Chem. Commun. 2010, 46, 1932.
doi: 10.1039/b924716e
Wu, Y.-Z.; Shi, J.-F.; Ding, F.; Zhao, J.-J.; Zou, X.-Y.; Wang, M.-R.; Zhang, S.-H.; Tong, Z.-W.; Zhang, S.-P.; Jiang, Z.-Y. Sci. Sin. Chim. 2017, 47, 315.
Shin, W.; Lee, S. H.; Shin, J. W.; Lee, S. P.; Kim, Y. J. Am. Chem. Soc. 2003, 125, 14688.
doi: 10.1021/ja037370i
Glueck, S. M.; Gümüs, S.; Fabian, W. M. F.; Faber, K. Chem. Soc. Rev. 2010, 39, 313.
doi: 10.1039/B807875K
Allen, J. R.; Ensign, S. A. J. Bacteriol. 1996, 178, 1469.
doi: 10.1128/jb.178.5.1469-1472.1996
Boll, M.; Fuchs, G. Biol. Chem. 2005, 386, 989.
doi: 10.1515/BC.2005.115
Huang, J.; He, Z.; Wiegel, J. J. Bacteriol. 1999, 181, 5119.
Wieser, M.; Yoshida, T.; Nagasawa, T. J. Mol. Catal. B:Enzym. 2001, 11, 179.
doi: 10.1016/S1381-1177(00)00038-2
Miyazaki, M.; Shibue, M.; Ogino, K.; Nakamura, H.; Maeda, H. Chem. Commun. 2001, 18, 1800.
Tong, X.; El-Zahab, B.; Zhao, X.; Liu, Y.; Wang, P. Biotechnol. Bioeng. 2011, 108, 465.
doi: 10.1002/bit.22938
Liu, W.-F.; Hou, Y.-H.; Hou, B.-X.; Zhao, Z.-P. Chinese J. Chem. Eng. 2014, 22, 1328.
Liu, W.-F.; Hou, B.-X.; Hou, Y.-H.; Zhao, Z.-P. Chinese J. Catal. 2012, 33, 730.
Li, R.; Wang, Z.; Ni, P.; Zhao, Y.; Li, M.; Li, L. Fuel 2014, 128, 180.
doi: 10.1016/j.fuel.2014.03.011
Jadhav, S. G.; Vaidya, P. D.; Bhanage, B. M.; Joshi, J. B. Chem. Eng. Res. Des. 2014, 92, 2557.
doi: 10.1016/j.cherd.2014.03.005
Goeppert, A.; Czaun, M.; Jones, J.-P.; Surya Prakash, G. K.; Olah, G. A. Chem. Soc. Rev. 2014, 43, 7995.
doi: 10.1039/C4CS00122B
Wang, W.-H.; Himeda, Y.; Muckerman, J. T.; Manbeck, G. F.; Fujita, E. Chem. Rev. 2015, 115, 12936.
doi: 10.1021/acs.chemrev.5b00197
Kuwabata, S.; Tsuda, R.; Yoneyama, H. J. Am. Chem. Soc. 1994, 116, 5437.
doi: 10.1021/ja00091a056
Baskaya, F. S.; Zhao, X.; Flickinger, M. C.; Wang, P. Appl. Biochem. Biotechnol. 2010, 162, 391.
doi: 10.1007/s12010-009-8758-x
Xu, S.-W.; Lu, Y.; Li, J.; Jiang, Z.-Y.; Wu, H. Ind. Eng. Chem. Res. 2006, 45, 4567.
doi: 10.1021/ie051407l
Sun, Q.; Jiang, Y.; Jiang, Z.; Zhang, L.; Sun, X.; Li, J. Ind. Eng. Chem. Res. 2009, 48, 4210.
doi: 10.1021/ie801931j
Jiang, Y.; Sun, Q.; Zhang, L.; Jiang, Z. J. Mater. Chem. 2009, 19, 9068.
doi: 10.1039/b914268a
Wang, X.; Li, Z.; Shi, J.; Wu, H.; Jiang, Z.; Zhang, W.; Song, X.; Ai, Q. ACS Catal. 2014, 4, 962.
doi: 10.1021/cs401096c
Aresta, M.; Dibenedetto, A.; Baran, T.; Angelini, A.; Labuz, P.; Macyk, W. Beilstein J. Org. Chem. 2014, 10, 2556.
doi: 10.3762/bjoc.10.267
El-Zahab, B.; Donnelly, D.; Wang, P. Biotechnol. Bioeng. 2008, 99, 508.
doi: 10.1002/bit.21584
Ji, X.; Su, Z.; Wang, P.; Ma, G.; Zhang, S. ACS Nano 2015, 9, 4600.
doi: 10.1021/acsnano.5b01278
Singh, R. K.; Singh, R.; Sivakumar, D.; Kondaveeti, S.; Kim, T.; Li, J.; Sung, B. H.; Cho, B.-K.; Kim, D. R.; Kim, S. C.; Kalia, V. C.; Zhang, Y.-H. P. J.; Zhao, H.; Kang, Y. C.; Lee, J.-K. ACS Catal. 2018, 8, 11085.
doi: 10.1021/acscatal.8b02646
Calvin, M.; Massini, P. Experientia 1952, 8, 445.
doi: 10.1007/BF02139287
Wendell, D.; Todd, J.; Montemagno, C. Nano Lett. 2010, 10, 3231.
doi: 10.1021/nl100550k
Atsumi, S.; Higashide, W.; Liao, J. C. Nat. Biotechnol. 2009, 27, 1177.
doi: 10.1038/nbt.1586
Wang, W.; Yan, Z.-J.; Yuan, Y.; Sun, F.-X.; Zhao, M.; Ren, H.; Zhu, G.-S. Acta Chim. Sinica 2014, 72, 557.
Jia, J.-T.; Wang, L.; Zhao, Q.; Sun, F.-X.; Zhu, G.-S. Acta Chim. Sinica 2013, 71, 1492.
Zixuan Zhu , Xianjin Shi , Yongfang Rao , Yu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954
Tianbo Jia , Lili Wang , Zhouhao Zhu , Baikang Zhu , Yingtang Zhou , Guoxing Zhu , Mingshan Zhu , Hengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692
Li Li , Fanpeng Chen , Bohang Zhao , Yifu Yu . Understanding of the structural evolution of catalysts and identification of active species during CO2 conversion. Chinese Chemical Letters, 2024, 35(4): 109240-. doi: 10.1016/j.cclet.2023.109240
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
Yuejiao An , Wenxuan Liu , Yanfeng Zhang , Jianjun Zhang , Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021
Yangrui Xu , Yewei Ren , Xinlin Liu , Hongping Li , Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
Xiutao Xu , Chunfeng Shao , Jinfeng Zhang , Zhongliao Wang , Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031
Jiaxing Cai , Wendi Xu , Haoqiang Chi , Qian Liu , Wa Gao , Li Shi , Jingxiang Low , Zhigang Zou , Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
Jianyu Qin , Yuejiao An , Yanfeng Zhang . In Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002
Yanan Liu , Yufei He , Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
Hui Shi , Shuangyan Huan , Yuzhi Wang . Ideological and Political Design of Potassium Permanganate Oxidation-Reduction Titration Experiment. University Chemistry, 2024, 39(2): 175-180. doi: 10.3866/PKU.DXHX202308042
Muhammad Humayun , Mohamed Bououdina , Abbas Khan , Sajjad Ali , Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193