Citation: Wang Qiang, Gu Qing, You Shu-Li. Recent Progress on Transition-Metal-Catalyzed Asymmetric C-H Bond Functionalization for the Synthesis of Biaryl Atropisomers[J]. Acta Chimica Sinica, ;2019, 77(8): 690-704. doi: 10.6023/A19060222 shu

Recent Progress on Transition-Metal-Catalyzed Asymmetric C-H Bond Functionalization for the Synthesis of Biaryl Atropisomers

  • Corresponding author: You Shu-Li, slyou@sioc.ac.cn
  • Received Date: 19 June 2019
    Available Online: 17 August 2019

    Fund Project: the National Natural Science Foundation of China 21572250Project supported by the National Natural Science Foundation of China (91856201, 21572250), the Initiative Postdocs Supporting Program (BX20180342) and China Postdoctoral Science Foundation (2019M650092)China Postdoctoral Science Foundation 2019M650092the Initiative Postdocs Supporting Program BX20180342the National Natural Science Foundation of China 91856201

Figures(35)

  • Axial chirality is of significant importance in chiral molecules. Axially chiral biaryls are existed in numerous natural products and biologically active molecules. Moreover, they have been extensively used as chiral catalysts and chiral ligands in asymmetric catalysis. Due to the importance of these privileged scaffolds, considerable attention has been attracted to develop novel, efficient and practical methods for their asymmetric synthesis by utilizing chiral transition-metal catalysis or chiral organocatalysis. Among those reported elegant achievements, asymmetric C—H bond functionalization reactions are the most concise and efficient methods for the synthesis of axial chiral biaryls in terms of atom and step economies. With the advancement of transition-metal-catalyzed asymmetric C—H bond functionalization reactions, they largely promote the field of asymmetric synthesis of axially chiral biaryls. Recent progress on the development of synthesis of axially chiral biaryls via transition metal (Pd-, Rh-, and Ir-) catalyzed asymmetric C—H bond functionalization reactions are summarized in this review. Those mainly include:Rh-catalyzed enantioselective C(sp2)-H bond alkylation and arylation reactions with the combination of rhodium (I) catalyst precursors and chiral phosphine ligands; Rh-catalyzed enantioselective C(sp2)-H bond alkenylation, arylation and annulation reactions with well-defined chiral rhodium (Ⅲ)-Cp(SCp) complexes; Ir-catalyzed enantioselective C(sp2)-H bond arylation reactions with chiral iridium (Ⅲ)-Cp complex and chiral amino acid as co-catalyst; Pd-catalyzed diastereoselective C(sp2)-H bond alkenylation, iodination, and arylation reactions using chiral p-tolyl sulfoxide auxiliary or menthyl phenylphosphate group as a directing group; Pd-catalyzed intramolecular enantioselective C(sp2)-H bond arylation reaction with Pd(0) catalyst precursors and chiral TADDOL-phosphoramidites; Pd-catalyzed intermolecular enantioselective C(sp2)-H bond iodination, alkenylation, alkynylation, allylation and arylation reactions with Pd(Ⅱ) catalyst precursors and mono-N-protected amino acids (MPAAs). In addition, preparation of varieties of novel axially chiral ligands by utilizing these methods and their applications in catalytic asymmetric reactions are also covered. Meanwhile, applications of these methods as key steps in the synthesis of natural products are also discussed.
  • 加载中
    1. [1]

      For selected reviews, (a) Chang, J.; Reiner, J.; Xie, J. Chem. Rev. 2005, 105, 4581. (b) Kozlowski, M. C.; Morgan, B. J.; Linton, E. C. Chem. Soc. Rev. 2009, 38, 3193. (c) Bringmann, G.; Gulder, T.; Gulder, T. A. M.; Breuning, M. Chem. Rev. 2011, 111, 563.

    2. [2]

      For selected works, see: (a) Wu, Y.-L.; Ferroni, F.; Pieraccini, S.; Schweizer, W. B.; Frank, B. B.; Spada, G. P.; Diederich, F. Org. Biomol. Chem. 2012, 10, 8016. (b) Zhu, Y.-Y.; Wu, X.-D.; Gu, S.-X.; Pu, L. J. Am. Chem. Soc. 2019, 141, 175. For a review: (c) Pu, L. Acc. Chem. Res. 2012, 45, 150.

    3. [3]

      (a) Clayden, J.; Moran, W. J.; Edwards, P. J.; LaPlante, S. R. Angew. Chem. Int. Ed. 2009, 48, 6398. (b) LaPlante, S. R.; Edwards, P. J.; Fader, L. D.; Jakalian, A.; Hucke, O. ChemMedChem 2011, 6, 505. (c) Zask, A.; Murphy, J.; Ellestad, G. A. Chirality 2013, 25, 265. (d) Smyth, J. E.; Butler, N. M.; Keller, P. A. Nat. Prod. Rep. 2015, 32, 1562.

    4. [4]

      For selected reviews, see: (a) Akiyama, T.; Itoh, J.; Fuchibe, K. Adv. Synth. Catal. 2006, 348, 999. (b) Brunel, J. M. Chem. Rev. 2007, 107, PR1. (c) Yu, J.; Shi, F.; Gong, L.-Z. Acc. Chem. Res. 2011, 44, 1156. (d) Parmar, D.; Sugiono, E.; Raja, S.; Rueping, M. Chem. Rev. 2014, 114, 9047. (e) Min, C.; Seidel, D. Chem. Soc. Rev. 2017, 46, 5889. (f) Wang, Q.; Gu, Q.; You, S.-L. Angew. Chem. Int. Ed. 2019, 58, 6818. For a book, see: (g) Privileged Chiral Ligands and Catalysts, Ed.: Zhou, Q.-L., Wiley-VCH, Weinheim, Germany, 2011.

    5. [5]

    6. [6]

    7. [7]

      Kakiuchi, F.; Le Gendre, P.; Yamada, A.; Ohtaki, H.; Murai, S. Tetrahedron:Asymmetry 2000, 11, 2647.  doi: 10.1016/S0957-4166(00)00244-5

    8. [8]

      For reviews on asymmetric C-H functionalization, see: (a) Giri, R.; Shi, B.-F.; Engle, K. M.; Maugel, N.; Yu, J.-Q. Chem. Soc. Rev. 2009, 38, 3242. (b) Yang, L.; Huang, H. Catal. Sci. Technol. 2012, 2, 1099. (c) Engle, K. M.; Yu, J.-Q. J. Org. Chem. 2013, 78, 8927. (d) Wencel-Delord, J.; Colobert, F. Chem. Eur. J. 2013, 19, 14010. (e) Zheng, C.; You, S.-L. RSC Adv. 2014, 4, 6173. (f) Pedroni, J.; Cramer, N. Chem. Commun. 2015, 51, 17647. (g) Newton, C. G.; Wang, S.-G.; Oliveira, C. C.; Cramer, N. Chem. Rev. 2017, 117, 8908. (h) Gao, D.-W.; Gu, Q.; Zheng, C.; You, S.-L. Acc. Chem. Res. 2017, 50, 351; (i) Saint-Denis, T. G.; Zhu, R.-Y.; Chen, G.; Wu, Q.-F.; Yu, J.-Q. Science 2018, 359, 759. For a book, see: (j) Asymmetric Functionalization of C-H Bonds, Ed.: You, S.-L., RSC: Cambridge, UK, 2015.

    9. [9]

      Zheng, J.; You, S.-L. Angew. Chem. Int. Ed. 2014, 53, 13244.  doi: 10.1002/anie.201408805

    10. [10]

      (a) Ye, B.; Cramer, N. Science 2012, 338, 504. (b) Ye, B.; Cramer, N. J. Am. Chem. Soc. 2013, 135, 636. (c) Ye, B.; Donets, P. A.; Cramer, N. Angew. Chem. Int. Ed. 2014, 53, 507. (d) Ye, B.; Cramer, N. Angew. Chem. Int. Ed. 2014, 53, 7896.

    11. [11]

      Zheng, J.; Cui, W. J.; Zheng, C.; You, S.-L. J. Am. Chem. Soc. 2016, 138, 5242.  doi: 10.1021/jacs.6b02302

    12. [12]

      Gre ies, S.; Klauck, F. J. R.; Kim, J. H.; Daniliuc, C. G.; Glorius, F. Angew. Chem. Int. Ed. 2018, 57, 9950.  doi: 10.1002/anie.201805680

    13. [13]

      Wang, Q.; Cai, Z.-J.; Liu, C.-X.; Gu, Q.; You, S.-L. J. Am. Chem. Soc. 2019, 141, 9504.  doi: 10.1021/jacs.9b03862

    14. [14]

      Jia, Z. J.; Merten, C.; Gontla, R.; Daniliuc, C. G.; Antonchick, A. P.; Waldmann, H. Angew. Chem. Int. Ed. 2017, 56, 2429.  doi: 10.1002/anie.201611981

    15. [15]

      For reviews on chiral cyclopentadienyl ligands, see: (a) Ye, B.; Cramer, N. Acc. Chem. Res. 2015, 48, 1308. (b) Newton, C. G.; Kossler, D.; Cramer, N. J. Am. Chem. Soc. 2016, 138, 3935.

    16. [16]

      Shan, G.; Flegel, J.; Li, H.; Merten, C.; Ziegler, S.; Antonchick, A. P.; Waldmann, H. Angew. Chem. Int. Ed. 2018, 57, 14250.  doi: 10.1002/anie.201809680

    17. [17]

      Tian, M.; Bai, D.; Zheng, G.; Chang, J.; Li, X. J. Am. Chem. Soc. 2019, 141, 9527.  doi: 10.1021/jacs.9b04711

    18. [18]

      Jang, Y. S.; Dieckmann, M.; Cramer, N. Angew. Chem. Int. Ed. 2017, 56, 15088.  doi: 10.1002/anie.201708440

    19. [19]

      B rner, A. Phosphorus Ligands in Asymmetric Catalysis: Synthesis and Applications, Vol. 1~3, Wiley-VCH, Weinheim, 2008.

    20. [20]

      Cramer, N.; Jang, Y. S.; Wozniak, L.; Pedroni, J. Angew. Chem. Int. Ed. 2018, 57, 12901.  doi: 10.1002/anie.201807749

    21. [21]

      For reviews: (a) Wencel-Delord, J.; Colobert, F. Synlett 2015, 26, 2644. (b) Tang, K.-X.; Wang, C.-M.; Gao, T.-H.; Chen, L.; Fan, L.; Sun, L.-P. Adv. Synth. Catal. 2019, 361, 26.

    22. [22]

      Wesch, T.; Leroux, F. R.; Colobert, F. Adv. Synth. Catal. 2013, 355, 2139.  doi: 10.1002/adsc.201300446

    23. [23]

      (a) Hazra, C. K.; Dherbassy, Q.; Wencel-Delord, J.; Colobert, F. Angew. Chem. Int. Ed. 2014, 53, 13871. (b) Dherbassy, Q.; Schwertz, G.; Hazra, C. K.; Wesch, T.; Wencel-Delord, J.; Colobert, F. Phosphorus, Sulfur Silicon Relat. Elem. 2015, 190, 1339.

    24. [24]

      Dherbassy, Q.; Schwertz, G.; Chessé, M.; Hazra, C. K.; Wencel-Delord, J.; Colobert, F. Chem. Eur. J. 2016, 22, 1735.  doi: 10.1002/chem.201503650

    25. [25]

      Dherbassy, Q.; Wencel-Delord, J.; Colobert, F. Tetrahedron 2016, 72, 5238.  doi: 10.1016/j.tet.2016.03.060

    26. [26]

      Dherbassy, Q.; Djukic, J. P.; Wencel-Delord, J.; Colobert, F. Angew. Chem. Int. Ed. 2018, 57, 4668.  doi: 10.1002/anie.201801130

    27. [27]

      (a) Ma, Y. N.; Zhang, H.-Y.; Yang, S.-D. Org. Lett. 2015, 17, 2034. For reviews, see: (b) Ma, Y. N.; Li, S. X.; Yang, S.-D. Acc. Chem. Res. 2017, 50, 1480. (c) Zhang, Z.; Dixneuf, P. H.; Soule, J. F. Chem. Commun. 2018, 54, 7265.

    28. [28]

      Albicker, M., R; Cramer, N. Angew. Chem. Int. Ed. 2009, 48, 9139.  doi: 10.1002/anie.200905060

    29. [29]

      He, C.; Hou, M.; Zhu, Z.; Gu, Z. ACS Catal. 2017, 7, 5316.  doi: 10.1021/acscatal.7b01855

    30. [30]

      Newton, C. G.; Braconi, E.; Kuziola, J.; Wodrich, M. D.; Cramer, N. Angew. Chem. Int. Ed. 2018, 57, 11040.  doi: 10.1002/anie.201806527

    31. [31]

      Yamaguchi, K.; Yamaguchi, J.; Studer, A.; Itami, K. Chem. Sci. 2012, 3, 2165.  doi: 10.1039/c2sc20277h

    32. [32]

      Yamaguchi, K.; Kondo, H.; Yamaguchi, J.; Itami, K. Chem. Sci. 2013, 4, 3753.  doi: 10.1039/c3sc51206a

    33. [33]

      Nishimoto, Y.; Kondo, H.; Yamaguchi, K.; Yokogawa, D.; Yamaguchi, J.; Itami, K.; Irle, S. J. Org. Chem. 2017, 82, 4900.  doi: 10.1021/acs.joc.6b02675

    34. [34]

      Shi, B.-F.; Maugel, N.; Zhang, Y.-H.; Yu, J.-Q. Angew. Chem. Int. Ed. 2008, 47, 4882.  doi: 10.1002/anie.200801030

    35. [35]

      Gao, D.-W.; Gu, Q.; You, S.-L. ACS Catal. 2014, 4, 2741.  doi: 10.1021/cs500813z

    36. [36]

      Li, S. X.; Ma, Y.-N.; Yang, S.-D. Org. Lett. 2017, 19, 1842.  doi: 10.1021/acs.orglett.7b00608

    37. [37]

      Zhang, F.-L.; Hong, K.; Li, T. J.; Park, H.; Yu, J.-Q. Science 2016, 351, 252.  doi: 10.1126/science.aad7893

    38. [38]

      Yao, Q.-J.; Zhang, S.; Zhan, B.-B.; Shi, B.-F. Angew. Chem. Int. Ed. 2017, 56, 6617.  doi: 10.1002/anie.201701849

    39. [39]

      Fan, J.; Yao, Q.-J.; Liu, Y.-H.; Liao, G.; Zhang, S.; Shi, B.-F. Org. Lett. 2019, 21, 3352.  doi: 10.1021/acs.orglett.9b01099

    40. [40]

      Liao, G.; Yao, Q.-J.; Zhang, Z.-Z.; Wu, Y.-J.; Huang, D. Y.; Shi, B.-F. Angew. Chem. Int. Ed. 2018, 57, 3661.  doi: 10.1002/anie.201713106

    41. [41]

      Zhang, S.; Yao, Q.-J.; Liao, G.; Li, X.; Li, H.; Chen, H.-M.; Hong, X.; Shi, B.-F. ACS Catal. 2019, 9, 1956.  doi: 10.1021/acscatal.8b04870

    42. [42]

      Liao, G.; Li, B.; Chen, H.-M.; Yao, Q. J.; Xia, Y. N.; Luo, J.; Shi, B.-F. Angew. Chem. Int. Ed. 2018, 57, 17151.  doi: 10.1002/anie.201811256

    43. [43]

      Liao, G.; Chen, H.-M.; Xia, Y.-N.; Li, B.; Yao, Q.-J.; Shi, B.-F. Angew. Chem. Int. Ed. 2019, DOI:10.1002/anie.201906700.  doi: 10.1002/anie.201906700

    44. [44]

      Wen, W.; Chen, L.; Luo, M.-J.; Zhang, Y.; Chen, Y.-C.; Ouyang, Q.; Guo, Q.-X. J. Am. Chem. Soc. 2018, 140, 9774.  doi: 10.1021/jacs.8b06676

    45. [45]

      Luo, J.; Zhang, T.; Wang, L.; Liao, G.; Yao, Q.-J.; Wu, Y.-J.; Zhan, B.-B.; Lan, Y.; Lin, X.-F.; Shi, B.-F. Angew. Chem. Int. Ed. 2019, 58, 6708.  doi: 10.1002/anie.201902126

    46. [46]

      Sun, Q.-Y.; Ma, W.-Y.; Yang, K.-F.; Cao, J.; Zheng, Z.-J.; Xu, Z.; Cui, Y.-M.; Xu, L.-W. Chem. Commun. 2018, 54, 10706.  doi: 10.1039/C8CC05555F

    47. [47]

      Li, H.; Yan, X.; Zhang, J.; Guo, W.; Jiang, J.; Wang, J. Angew. Chem. Int. Ed. 2019, 58, 6732.  doi: 10.1002/anie.201901619

  • 加载中
    1. [1]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    2. [2]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    3. [3]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    4. [4]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    5. [5]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    6. [6]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    7. [7]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    8. [8]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    9. [9]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    10. [10]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    11. [11]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    12. [12]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    13. [13]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    14. [14]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    15. [15]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    16. [16]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    17. [17]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    18. [18]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    19. [19]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    20. [20]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

Metrics
  • PDF Downloads(73)
  • Abstract views(2176)
  • HTML views(344)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return