Citation: Zhang Heng, Mou Xueqing, Chen Gong, He Gang. Copper-catalyzed Intramolecular Aminoperfluoroalkylation Reaction of O-Homoallyl Benzimidates[J]. Acta Chimica Sinica, ;2019, 77(9): 884-888. doi: 10.6023/A19060220 shu

Copper-catalyzed Intramolecular Aminoperfluoroalkylation Reaction of O-Homoallyl Benzimidates

  • Corresponding author: Chen Gong, gongchen@nankai.edu.cn He Gang, hegang@nankai.edu.cn
  • Received Date: 18 June 2019
    Available Online: 13 September 2019

    Fund Project: Project supported by the National Natural Science Foundation of China (21672105, 21702109, 21890722), Natural Science Foundation of Tianjin (17JCYBJC19700, 18JCZDJC32800), and the Fundamental Research Funds for the Central Universities (Nankai University (No. 63161122)). We dedicate this work to the 100th anniversary of Nankai University

Figures(5)

  • Azaheterocycles have been broadly applied in the development of therapeutic agents, agrochemicals and functional material molecules. Azaheterocycles equipped with perfluoroalkyl group usually manifest superior physical and biological properties than their parent molecules, such as showing improved metabolic stability and high lipophilicity. The synthesis of perfluoroalkyl modified azaheterocycles has attracted considerable research interest in recent years. The strategy of intramolecular aminoperfluoroalkylation of alkenes, which functionalize C=C bond with an external perfluoroalkyl group and an internal amine nucleophile in one pot, provides a streamlined synthesis of perfluoroalkyl substituted azaheterocycles. This strategy has been applied by Liu, Sodeoka and other research groups in the synthesis of perfluoroalkyl substituted aziridines, pyrrolidines, lactams and pyrazolines featuring the use of pendent amine, amide, hydrazone or urea group as internal amine source. We have previously developed a copper(Ⅰ)-catalyzed intramolecular aminotrifluoromethylation reaction of O-homoallyl benzimidates with Togni reagent Ⅰ for the synthesis of trifluoromethyl containing chiral 1, 3-oxazines using a chiral BOX ligand. However, this method is limited to aminotrifluoromethylation reaction as other perfluoroalkyl substituted hypervalent iodine reagents are not easily accessible. Herein, we report our recent research results on the synthesis of perfluoroalkyl substituted 1, 3-oxazines using commercial available perfluoroalkyl iodides as perfluoroalkyl source. This intramolecular aminoperfluoroalkylation reaction proceeds selectively in the presence of Cu(OAc)2 catalyst, 1, 10-phenanthroline ligand and AgOAc additive. A broad range of O-homoallyl benzimidates and perfluoroalkyl iodides are compatible with the reaction conditions, affording perfluoroalkyl substituted 1, 3-oxazines in moderate to good yields. The 1, 3-oxazine product can be prepared in gram scale and readily hydrolyzed under mild conditions to give perfluoroalkyl substituted 1, 3-amino alcohols. Preliminary mechanism studies revealed that this intramolecular aminoperfluoroalkylation reaction initiated with the addition of a perfluoroalkyl radical to the terminal alkene, and the subsequent functionalization with the benzimidate motif via intramolecular substitution generated 1, 3-oxazine products.
  • 加载中
    1. [1]

      Hu, J.; Ding, K. Acta Chim. Sinica 2018, 76, 905(in Chinese).  doi: 10.3969/j.issn.0253-2409.2018.08.002
       

    2. [2]

      (a) Smart, B. E. J. Flurorine Chem. 2001, 109, 3; (b) Hagmann, W. K. J. Med. Chem. 2008, 51, 4359; (c) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320; (d) Zhou, Y.; Wang, J.; Gu, Z.; Wang, S.; Zhu, W.; Acena, J. L.; Soloshonok, V. A.; Izawa, K.; Liu, H. Chem. Rev. 2016, 116, 422.

    3. [3]

      (a) Vitaku, E.; Smith, D. T.; Njardarson, J. T. J. Med. Chem. 2014, 57, 10257; (b) Meyer, F. Chem. Commun. 2016, 52, 3077.

    4. [4]

      Tian, Y.; Chen, S.; Gu, Q.-S.; Lin, J.-S.; Liu, X.-Y. Tetrahedron Lett. 2018, 59, 203.  doi: 10.1016/j.tetlet.2017.12.034

    5. [5]

      (a) Takamasa, F.; Yoshiko, S.; Hisao, U. Chem. Lett. 1987, 16, 521; (b) Kim, E.; Choi, S.; Kim, H.; Cho, E. J. Chem.-Eur. J. 2013, 19, 6209; (c) Matcha, K.; Antonchick, A. P. Angew. Chem., Int. Ed. 2014, 53, 11960; (d) Wei, Q.; Chen, J.-R.; Hu, X.-Q.; Yang, X.-C.; Lu, B.; Xiao, W.-J. Org. Lett. 2015, 17, 4464; (e) Jarrige, L.; Carboni, A.; Dagousset, G.; Levitre, G.; Magnier, E.; Masson, G. Org. Lett. 2016, 18, 2906.

    6. [6]

      For copper catalyzed intramolecular aminoperfuoroalkylation, see: (a) Egami, H.; Kawamura, S.; Miyazaki, A.; Sodeoka, M. Angew. Chem., Int. Ed. 2013, 52, 7841; (b) Kawamura, S.; Egami, H.; Sodeoka, M. J. Am. Chem. Soc. 2015, 137, 4865; (c) Kawamura, S.; Dosei, K.; Valverde, E.; Ushida, K.; Sodeoka, M. J. Org. Chem. 2017, 82, 12539; (d) Lin, J.-S.; Liu, X.-G.; Zhu, X.-L.; Tan, B.; Liu, X.-Y. J. Org. Chem. 2014, 79, 7084; (e) Lin, J.-S.; Xiong, Y.-P.; Ma, C.-L.; Zhao, L.-J.; Tan, B.; Liu, X.-Y. Chem.-Eur. J. 2014, 20, 1332; (f) Li, X.-F.; Lin, J.-S.; Liu, X.-Y. Synthesis 2017, 49, 4213; (g) Shen, K.; Wang, Q. Org. Chem. Front. 2016, 3, 222; (h) Yu, L.-Z.; Wei, Y.; Shi, M. Chem. Commun. 2016, 52, 13163; (i) Zhang, H.-Y.; Huo, W.; Ge, C.; Zhao, J.; Zhang, Y. Synlett 2017, 28, 962; (j) Chang, B.; Su, Y.; Huang, D.; Wang, K.-H.; Zhang, W.; Shi, Y.; Zhang, X.; Hu, Y. J. Org. Chem. 2018, 83, 4365.

    7. [7]

      For enantioselective aminotrifluoromethylation of alkene, see: (a) Lin, J.-S.; Dong, X.-Y.; Li, T.-T.; Jiang, N.-C.; Tan, B.; Liu, X.-Y. J. Am. Chem. Soc. 2016, 138, 9357; (b) Lin, J.-S.; Wang, F.-L.; Dong, X.-Y.; He, W.-W.; Yuan, Y.; Chen, S.; Liu, X.-Y. Nat. Commun. 2017, 8, 14841.

    8. [8]

      For recent examples of using imidates as nucleophile, see: (a) Brindle, C. S.; Yeung, C. S.; Jacobsen, E. N. Chem. Sci. 2013, 4, 2100; (b) Zhu, R.; Yu, K.; Gu, Z. Org. Biomol. Chem. 2014, 12, 6653.

    9. [9]

      Mou, X.-Q.; Chen, X.-Y.; Chen, G.; He, G. Chem. Commun. 2018, 54, 515.  doi: 10.1039/C7CC08897C

    10. [10]

      For selected examples of intramolecular C-H amination of imidates by other groups, see: (a) Wappes, E. A.; Nakafuku, K. M.; Nagib, D. A. J. Am. Chem. Soc. 2017, 139, 10204; (b) Stateman, L. M.; Wappes, E. A.; Nakafuku, K. M.; Edwards, K. M.; Nagib, D. A. Chem. Sci. 2019, 10, 2693; (c) Shaw, M.; Kumar, A. Org. Lett. 2019, 21, 3108.

    11. [11]

      Mou, X.-Q.; Rong, F.-M.; Zhang, H.; Chen, G.; He, G. Org. Lett. 2019, 21, 4657.  doi: 10.1021/acs.orglett.9b01552

    12. [12]

      (a) Eisenberger, P.; Gischig, S.; Togni, A. Chem.-Eur. J. 2006, 12, 2579; (b) Matoušek, V.; Pietrasiak, E.; Schwenk, R.; Togni, A. J. Org. Chem. 2013, 78, 6763; (c) Charpentier, J.; Früh, N.; Togni, A. Chem. Rev. 2015, 115, 650.

    13. [13]

    14. [14]

    15. [15]

      For selected examples of perfluoroalkylation of aromatic compounds with perfluoroalkyl iodides, see (a) Iqbal, N.; Choi, S.; Ko, E.; Cho, E. J. Tetrahedron Lett. 2012, 53, 2005; (b) Barata-Vallejo, S.; Flesia, M. M.; Lanta o, B.; Argüello, J. E.; Pe é ory, A. B.; Postigo, A. Eur. J. Org. Chem. 2013, 2013, 998; (c) Straathof, N. J. W.; Gemoets, H. P. L.; Wang, X.; Schouten, J. C.; Hessel, V.; No l, T. ChemSusChem 2014, 7, 1612; (d) Huang, Y.; Lei, Y.-Y.; Zhao, L.; Gu, J.; Yao, Q.; Wang, Z.; Li, X.-F.; Zhang, X.; He, C.-Y. Chem. Commun. 2018, 54, 13662; (e) Yerien, D. E.; Cooke, M. V.; García Vior, M. C.; Barata-Vallejo, S.; Postigo, A. Org. Biomol. Chem. 2019, 17, 3741.

    16. [16]

      For selected examples of perfluoroalkylation of alkene with perfluoroalkyl iodides under visible light irradiation, see (a) Brace, N. O. J. Org. Chem. 1963, 28, 3093; (b) Habib, M. H.; Mallouk, T. E. J. Flurorine Chem. 1991, 53, 53; (c) Ogawa, A.; Imura, M.; Kamada, N.; Hirao, T. Tetrahedron Lett. 2001, 42, 2489; (d) Tsuchii, K.; Imura, M.; Kamada, N.; Hirao, T.; Ogawa, A. J. Org. Chem. 2004, 69, 6658; (e) Wallentin, C.-J.; Nguyen, J. D.; Finkbeiner, P.; Stephenson, C. R. J. J. Am. Chem. Soc. 2012, 134, 8875; (f) Mizuta, S.; Verhoog, S.; Engle, K. M.; Khotavivattana, T.; O'Duill, M.; Wheelhouse, K.; Rassias, G.; Médebielle, M.; Gouverneur, V. J. Am. Chem. Soc. 2013, 135, 2505; (g) Wang, Y.; Wang, J.; Li, G.-X.; He, G.; Chen, G. Org. Lett. 2017, 19, 1442; (h) Beniazza, R.; Remisse, L.; Jardel, D.; Lastécouères, D.; Vincent, J.-M. Chem. Commun. 2018, 54, 7451; (j) Rawner, T.; Lutsker, E.; Kaiser, C. A.; Reiser, O. ACS Catal. 2018, 8, 3950.

    17. [17]

      For selected examples of transition metal catalyzed perfluoroalkylation of alkene with perfluoroalkyl iodides, see: (a) Gil-Rubio, J.; Guerrero-Leal, J.; Blaya, M.; Vicente, J.; Bautista, D.; Jones, P. G. Organometallics 2012, 31, 1287; (b) Blaya, M.; Bautista, D.; Gil-Rubio, J.; Vicente, J. Organometallics 2017, 36, 1245; (c) Zheng, J.; Chen, P.; Yuan, Y.; Cheng, J. J. Org. Chem. 2017, 82, 5790.

    18. [18]

      For selected reviews on the synthesis and application of 1, 3-oxazines, see: (a) Schmidt, R. R. Synthesis 1972, 1972, 333; (b) Sato, M.; Sunami, S.; Kaneko, C. Heterocycles 1996, 42, 861.

    19. [19]

      In the reaction of O-homoallyl benzimidates equipped with multi-substituted alkene and trichloroacetimidate analogue of 1, no desired product was detected, and most of the starting material remain unconsumed.

  • 加载中
    1. [1]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    2. [2]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    3. [3]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    4. [4]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    5. [5]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    6. [6]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    7. [7]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    8. [8]

      Yang Chen Peng Chen Yuyang Song Yuxue Jin Song Wu . Application of Chemical Transformation Driven Impurity Separation in Experiments Teaching: A Novel Method for Purification of α-Fluorinated Mandelic Acid. University Chemistry, 2024, 39(6): 253-263. doi: 10.3866/PKU.DXHX202310077

    9. [9]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    10. [10]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    11. [11]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    12. [12]

      Shahua Huang Xiaoming Guo Lin Lin Guangping Chang Sheng Han Zuxin Zhou . Application of “Integration of Industry and Education” in Engineering Chemistry: Improvement of the Pesticide Fipronil Production. University Chemistry, 2024, 39(3): 199-204. doi: 10.3866/PKU.DXHX202309064

    13. [13]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    14. [14]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    15. [15]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    16. [16]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    17. [17]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    18. [18]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    19. [19]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    20. [20]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

Metrics
  • PDF Downloads(7)
  • Abstract views(957)
  • HTML views(156)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return