Citation: Cheng Shijie, Zeng Yang, Pei Yan, Fan Kangnian, Qiao Minghua, Zong Baoning. Synthesis and Catalysis of Pt/W-s-SBA-15 Catalysts with Short Channel for Glycerol Hydrogenolysis to 1, 3-Propanediol[J]. Acta Chimica Sinica, ;2019, 77(10): 1054-1062. doi: 10.6023/A19060219 shu

Synthesis and Catalysis of Pt/W-s-SBA-15 Catalysts with Short Channel for Glycerol Hydrogenolysis to 1, 3-Propanediol

  • Corresponding author: Qiao Minghua, mhqiao@fudan.edu.cn Zong Baoning, zongbn.ripp@sinopec.com
  • Received Date: 18 June 2019
    Available Online: 6 October 2019

    Fund Project: Project supported by the National Key Research and Development Project of China (No. 2016YFB0301602), the National Natural Science Foundation of China (No. 21872035), Science and Technology Commission of Shanghai Municipality (No. 08DZ2270500), and State Key Laboratory of Catalytic Materials and Reaction Engineering (RIPP, SINOPEC)the National Natural Science Foundation of China 21872035Science and Technology Commission of Shanghai Municipality 08DZ2270500the National Key Research and Development Project of China 2016YFB0301602

Figures(9)

  • The mesoporous SBA-15 molecular sieves doped in situ by W with channels parallel to the short axis (W-s-SBA-15) were synthesized by using decane as cosolvent and trimethylbenzene (TMB) as pore-expanding agent, which were used as the supports for the preparation of the Pt/W-s-SBA-15 catalysts. The effect of the loadings of Pt and W on the catalytic performance in glycerol hydrogenolysis to 1, 3-propanediol (1, 3-PDO) was investigated. The morphology, chemical states of Pt and W, and acidity of the catalysts were systematically characterized by using Brunauer-Emmett-Teller (BET), scanning electron microscopy (SEM), transmission electron microscopy (TEM), CO pulsed adsorption, X-ray photoelectron spectroscopy (XPS), Raman, ultraviolet-visible diffuse reflectance spectra (UV-Vis DRS), Fourier transform infrared spectroscopy (FT-IR) and FT-IR of adsorbed pyridine analysis (Py-IR). The BET and TEM results revealed that there are two kinds of pores in the structure:the mesoporous channels parallel to the short axis and honeycomb-like macropores. The Pt dispersion and active surface area calculated from CO chemical adsorption, firstly increased and then decreased with the increase in the Pt and W loadings. The highly dispersed tungsten species were assigned to the single-site WO4 on the basis of the characterization results of Raman, UV-Vis DRS, and FT-IR. The XPS results indicated that the amount of the Pt-O-Si/W linkages and the Ptδ+/(Pt0+Ptδ+) ratio are the highest on the 4Pt/W-s-SBA-15(1/480) catalyst which promote the dispersion of the Pt particles on the catalyst surface. With the increase in the loadings of Pt and W, the conversion of glycerol and the conversion of glycerol to liquid products (CTL) increased monotonically, while the selectivity to 1, 3-PDO experienced a volcanic-type evolution. At the reaction temperature of 433 K, H2 pressure of 4.0 MPa, and reaction time of 24 h, the highest yield of 1, 3-PDO of 49.0% was resulted on the 4Pt/W-s-SBA-15(1/480) catalyst. It is identified that the conversion of glycerol on the Pt/W-s-SBA-15 catalysts is proportional to the active surface area of Pt on the catalyst, while the small Pt particle size and the strong synergy between Pt and the highly dispersed WO4 species are advantageous to the formation of 1, 3-PDO.
  • 加载中
    1. [1]

      Sun, Q. M.; Wang, C. H.; Wang, L. M.; Zhang, L.; Fan, Y. C. Chem. Ind. Eng. Prog. 2017, 36, 161.
       

    2. [2]

      Ding, S.; Ge, Q. F.; Zhu, X. L. Acta Chim. Sinica 2017, 75, 29.  doi: 10.3969/j.issn.0253-2409.2017.01.005
       

    3. [3]

      Zhou, C. H.; Beltramini, J. N.; Fan, Y. X.; Lu, G. Q. Chem. Soc. Rev. 2008, 37, 527.  doi: 10.1039/B707343G

    4. [4]

      Behr, A.; Eilting, J.; Irawadi, K.; Leschinski, J.; Lindner, F. Green Chem. 2008, 10, 13.  doi: 10.1039/B710561D

    5. [5]

      Nimlos, M. R.; Blanksby, S. J.; Qian, X.; Himmel, M. E. J. Phys. Chem. A 2006, 110, 6145.  doi: 10.1021/jp060597q

    6. [6]

      Qin, L. Z.; Song, M. J.; Chen, C. L. Green Chem. 2010, 12, 1466.  doi: 10.1039/c0gc00005a

    7. [7]

      Zhu, S. H.; Zhu, Y. L.; Hao, S. L.; Zheng, H. Y.; Mo, T.; Li, Y. W. Green Chem. 2012, 14, 2607.  doi: 10.1039/c2gc35564g

    8. [8]

      Zhou, W.; Zhao, Y. J.; Wang, Y.; Wang, S. P. ChemCatChem 2016, 8, 3663.  doi: 10.1002/cctc.201600981

    9. [9]

      García-Fernández, S.; Gandarias, I.; Requies, J.; Güemez, M. B.; Bennici, S.; Auroux, A.; Arias, P. L. J. Catal. 2015, 323, 65.  doi: 10.1016/j.jcat.2014.12.028

    10. [10]

      Racha, A.; Tomoo, M.; Takato, M.; Koichiro, J.; Kiyotomi, K. ChemSusChem 2013, 6, 1345.  doi: 10.1002/cssc.201300196

    11. [11]

      Gong, L. F.; Yuan, L.; Ding, Y. J.; Lin, R. H.; Li, J. W.; Dong, W. D.; Tao, W.; Chen, W. M. Appl. Catal., A 2010, 390, 119.  doi: 10.1016/j.apcata.2010.10.002

    12. [12]

      Wang, J.; Zhao, X. C.; Wang, A. Q.; Zhang, T. ChemSusChem 2016, 9, 784.  doi: 10.1002/cssc.201501506

    13. [13]

      Zhao, X. C.; Wang, J.; Zhang, T.; Yang, M.; Lei, N.; Li, L.; Hou, B.; Miao, S.; Pan, X.; Wang, A. ChemSusChem 2016, 10, 819.

    14. [14]

      Feng, A. H.; Yu, Y.; Yu, Y.; Song, L. X. Acta Chim. Sinica 2018, 76, 27.  doi: 10.3969/j.issn.0253-2409.2018.01.004
       

    15. [15]

      Shi, G. J.; Xu, J. Y.; Song, Z. G.; Cao, Z.; Jin, K.; Xu, S. H.; Yan, X. T. Mol. Catal. 2018, 456, 22.  doi: 10.1016/j.mcat.2018.06.018

    16. [16]

      Wang, F.; Li, J. S.; Yuan, J. F.; Sun, X. Y.; Shen, J. Y.; Han, W. Q.; Wang, L. J. Catal. Commun. 2011, 12, 1415.  doi: 10.1016/j.catcom.2011.05.021

    17. [17]

      Zhu, J. L.; Wang, T.; Xu, X. L.; Xiao, P. Appl. Catal., B 2013, 130, 197.

    18. [18]

      Gu, M. Y.; Dong, W. J.; Peng, B. Y.; Long, Y.; Zheng, S.; Zhang, W.; Zhang, Y. L. Ind. Eng. Chem. Res. 2017, 56, 13572.  doi: 10.1021/acs.iecr.7b02899

    19. [19]

      Priya, S. S.; Kumar, V. P.; Kantam, M. L.; Bhargava, S. K.; Srikanth, A.; Chary, K. V. R. Ind. Eng. Chem. Res. 2015, 54, 9104.  doi: 10.1021/acs.iecr.5b01814

    20. [20]

      Fan, Y. Q.; Cheng, S. J.; Wang, H.; Ye, D. H.; Xie, S. H.; Pei, Y.; Hu, H. R.; Li, Z. H.; Hua, W. M.; Qiao, M. H. Green Chem. 2017, 19, 2174.  doi: 10.1039/C7GC00317J

    21. [21]

      Feng, S. H.; Zhao, B. b.; Liu, L.; Dong, J. X.; Feng, S. H.; Zhao, B. B.; Liu, L.; Dong, J. X. Ind. Eng. Chem. Res. 2017, 56, 11065.  doi: 10.1021/acs.iecr.7b02951

    22. [22]

      Zhang, H.; Sun, J. M.; Ma, D.; Bao, X. H.; Klein-Hoffmann, A.; Weinberg, G.; Su, D. S.; Schlögl, R. J. Am. Chem. Soc. 2004, 126, 7440.  doi: 10.1021/ja048630e

    23. [23]

      Everett, D. H. Pure Appl. Chem. 1972, 31, 578.

    24. [24]

      Kruk, M.; Jaroniec, M. Chem. Mater. 2001, 13, 3169.  doi: 10.1021/cm0101069

    25. [25]

      Liu, J. L.; Zhu, L. J.; Pei, Y.; Zhuang, J. H.; Li, H.; Li, H. X.; Qiao, M. H.; Fan, K. N. Appl. Catal., A 2009, 353, 282.  doi: 10.1016/j.apcata.2008.10.056

    26. [26]

      Chen, X. Y.; Lou, Z. Y.; Qiao, M. H.; Fan, K. N.; Tsang, S. C.; He, H. Y. J. Phys. Chem. C 2008, 112, 1316.  doi: 10.1021/jp710962p

    27. [27]

      Nie, Y. Y.; Shang, S. N.; Xin, X.; Hua, W. M.; Yue, Y. H.; Gao, Z. Appl. Catal., A 2012, 433-434, 69.  doi: 10.1016/j.apcata.2012.04.040

    28. [28]

      Yasutaka, N.; Takeshi, H.; Kazuhiko, D.; Takagi, N.; Minami, T.; Shinjoh, H.; Matsumoto, S. I. J. Catal. 2006, 242, 103.  doi: 10.1016/j.jcat.2006.06.002

    29. [29]

      Zhang, Z. Y.; Zhu, Q. J.; Ding, J.; Dai, W. L.; Zong, B. N. Acta Phys. Chim. Sinica 2014, 30, 1527.  doi: 10.3866/PKU.WHXB201406121

    30. [30]

      Lwin, S.; Li, Y. Y.; Frenkel, A. I.; Wachs, I. E. ACS Catal. 2016, 6, 3061.  doi: 10.1021/acscatal.6b00389

    31. [31]

      Stein, A.; Fendorf, M.; Jarvie, T. P.; Mueller, K. T.; Benesi, A. J.; Mallouk, T. E. Chem. Mater. 1995, 7, 304.  doi: 10.1021/cm00050a012

    32. [32]

      Weber, R. S. J. Catal. 1995, 151, 470.  doi: 10.1006/jcat.1995.1052

    33. [33]

      Briot, E.; Piquemal, J. Y.; Vennat, M.; Brégeault, J. M.; Chottard, G.; Manoli, J. M. J. Mater. Chem. 2000, 10, 953.  doi: 10.1039/a908428b

    34. [34]

      Klepel, O.; Böhlmann, W.; Ivanov, E. B.; Riede, V.; Papp, H. Microporous Mesoporous Mater. 2004, 76, 105.  doi: 10.1016/j.micromeso.2004.07.038

    35. [35]

      Hu, B.; Liu, H.; Tao, K.; Xiong, C. R.; Zhou, S. H. J. Phys. Chem. C 2013, 117, 26385.  doi: 10.1021/jp4098028

    36. [36]

      Hu, J. C.; Wang, Y. D.; Chen, L. F. Microporous Mesoporous Mater. 2006, 93, 158.  doi: 10.1016/j.micromeso.2006.02.019

    37. [37]

      Iglesia, E.; Barton, D. G.; Soled, S. L.; Miseo, S.; Baumgartner, J. E.; Gates, W. E.; Fuentes, G. A.; Meitzner, G. D. Stud. Surf. Sci. Catal 1996, 101, 533.  doi: 10.1016/S0167-2991(96)80264-3

    38. [38]

      Wu, P.; Tatsumi, T.; Komatsu, T.; Yashima, T. J. Catal. 2001, 202, 245.  doi: 10.1006/jcat.2001.3278

    39. [39]

      Rada, S.; Rada, M.; Culea, E. J. Alloys Compd. 2013, 552, 10.  doi: 10.1016/j.jallcom.2012.10.061

    40. [40]

      Bal, R.; Ghosh, S.; Acharyya, S. S.; Sasaki, T. Green Chem. 2015, 17, 1867.  doi: 10.1039/C4GC02123A

    41. [41]

      Zhu, S. H.; Gao, X. Q.; Zhu, Y. L.; Zhu, Y. F.; Xiang, X. M.; Hu, C. X.; Li, Y. W. Appl. Catal., B 2013, 140-141, 60.  doi: 10.1016/j.apcatb.2013.03.041

    42. [42]

      Zhu, S. H.; Gao, X. Q.; Zhu, Y. L.; Li, Y. W. J. Mol. Catal. A 2015, 398, 391.  doi: 10.1016/j.molcata.2014.12.021

    43. [43]

      Massa, A.; Andersson, M.; Finoccino, E.; Busca, G. J. Catal. 2013, 297, 93.  doi: 10.1016/j.jcat.2012.09.021

    44. [44]

      Galano, A.; Rodriguez-Gattorno, G.; Torres-García, E. Phys. Chem. Chem. Phys. 2008, 10, 4181.  doi: 10.1039/b802934b

    45. [45]

      Parry, E. P. J. Catal. 1963, 2, 371.  doi: 10.1016/0021-9517(63)90102-7

    46. [46]

      Onfroy, T.; Clet, G.; Houalla, M. Microporous Mesoporous Mater. 2005, 82, 99.  doi: 10.1016/j.micromeso.2005.02.020

    47. [47]

      Emeis, C. A. J. Catal. 1993, 141, 347.  doi: 10.1006/jcat.1993.1145

    48. [48]

      Schmidt-Winkel, P.; Lukens, W. W.; Yang, P. D.; Margolese, D. I.; Lettow, J. S.; Ying, J. Y.; Stucky, G. D. Chem. Mater. 2000, 12, 686.  doi: 10.1021/cm991097v

    49. [49]

      Kurosaka, T.; Maruyama, H.; Naribayashi, I.; Sasaki, Y. Catal. Commun. 2008, 9, 1360.  doi: 10.1016/j.catcom.2007.11.034

    50. [50]

      Takasu, Y.; Teramoto, M.; Matsuda, Y. J. Chem. Soc. Chem. Commun. 1983, 22, 1329.

    51. [51]

      Wang, L.; Stuckert, N. R.; Chen, H.; Yang, R. T. J. Phys. Chem. C 2011, 115, 4793.  doi: 10.1021/jp111800c

  • 加载中
    1. [1]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    2. [2]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    3. [3]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    4. [4]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    5. [5]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    6. [6]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    7. [7]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    8. [8]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    9. [9]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    10. [10]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    11. [11]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    12. [12]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    13. [13]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    14. [14]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    15. [15]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    16. [16]

      Rong-Nan YiWei-Min He . Photocatalytic Minisci-type multicomponent reaction for the synthesis of 1-(halo)alkyl-3-heteroaryl bicyclo[1.1.1]pentanes. Chinese Chemical Letters, 2024, 35(10): 110115-. doi: 10.1016/j.cclet.2024.110115

    17. [17]

      Yiling Wu Peiyao Jin Shenyue Tian Ji Zhang . The Star of Sugar Substitutes: An Interview of Erythritol. University Chemistry, 2024, 39(9): 22-27. doi: 10.12461/PKU.DXHX202404034

    18. [18]

      Runze Liu Yankai Bian Weili Dai . Qualitative and quantitative analysis of Brønsted and Lewis acid sites in zeolites: A combined probe-assisted 1H MAS NMR and NH3-TPD investigation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100250-100250. doi: 10.1016/j.cjsc.2024.100250

    19. [19]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

    20. [20]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

Metrics
  • PDF Downloads(9)
  • Abstract views(1499)
  • HTML views(112)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return