Citation: Yao Kun, Liu Hao, Yuan Qianjia, Liu Yangang, Liu Delong, Zhang Wanbin. Pd-Catalyzed Three-Component Chemospecific Allylic Substitution Cascade for the Synthesis of N-Carbonylmethylene-2-Pyridones[J]. Acta Chimica Sinica, ;2019, 77(10): 993-998. doi: 10.6023/A19060210 shu

Pd-Catalyzed Three-Component Chemospecific Allylic Substitution Cascade for the Synthesis of N-Carbonylmethylene-2-Pyridones

  • Corresponding author: Liu Delong, dlliu@sjtu.edu.cn Zhang Wanbin, wanbin@sjtu.edu.cn
  • Received Date: 13 June 2019
    Available Online: 14 October 2019

    Fund Project: the National Natural Science Foundation of China 21620102003Shanghai Municipal Education Commission 201701070002E00030the National Natural Science Foundation of China 21672142the National Natural Science Foundation of China 21971162the National Natural Science Foundation of China 21831005Project supported by the National Natural Science Foundation of China (Nos. 21971162, 21672142, 21620102003, 21831005) and Shanghai Municipal Education Commission (No. 201701070002E00030)

Figures(5)

  • Functionalized N-carbonylmethylene-2-pyridones are some of the most important structural motifs and exist in many natural products and bioactive compounds. Thus, the efficient construction of such skeletons has attracted much attention. Generally, the synthesis of N-carbonylmethylene-2-pyridones is realized via an intermolecular nucleophilic substitution of 2-hydroxypyridines and appropriate electrophiles. However, the above reactions often suffer from low yields caused by poor O/N chemoselectivities due to the dual nucleophilicity of the 2-hydroxypyridines. As far as the structure is concerned, N-carbonylmethylene-2-pyridones can be divided into three sections:a pyridone, a carbonylmethyl group and a side chain. When the side chain is a H atom, the N-substituted pyridones can be constructed conveniently via a reaction of 2-hydroxypyridines and primary α-bromocarbonyl compounds in high yields with excellent chemoselectivities. However, when the side chain is not a H atom, for example an alkyl group, only limited examples have been reported and only moderate yields of the desired N-substituted pyridine products are obtained by a combination of 2-hydroxypyridines and bulky secondary α-bromocarbonyl compounds, mainly due to the poor O/N chemoselectivities. To achieve a general synthetic pathway for the latter, the following practical strategy was designed. 2-Hydroxypyridines were first treated with primary α-bromocarbonyl compounds to generate the unique N-substituted intermediates in situ, which then reacted with the side chain electrophiles to give only the N-alkylated final products. Thus, a Pd-catalyzed three-component chemospecific allylic substitution cascade has been developed for the synthesis of N-carbonylmethylene-2-pyridone derivatives, with the desired products being obtained in up to 98% yield. No O-alkylated by-product was observed. The results suggested that the N-carbonylmethylene-2-pyridones are constructed via a cascade reaction consisting of a nucleophilic substitution followed by an allylic alkylation. The reaction was performed on a gram scale and the corresponding alkylated product was conveniently converted to a pyridone-containing unnatural amino acid. This methodology allows for the highly chemoselective synthesis of biologically important N-carbonylmethylene-2-pyridone derivatives.
  • 加载中
    1. [1]

      For selected reviews, see: (a) Lenglet, A.; Liabeuf, S.; Bodeau, S.; Louvet, L.; Mary, A.; Boullier, A.; Lemaire-Hurte, A. S.; Jonet, A.; Sonnet, P.; Kamel, S.; Massy, Z. A. Toxins 2016, 8, 339. (b) Stazi, G.; Zwergel, C.; Mai, A.; Valente, S. Expert Opin. Ther. Pat. 2017, 27, 797. (c) Fioravanti, R.; Stazi, G.; Zwergel, C.; Valente, S.; Mai, A. Chem. Rec. 2018, 18, 1818. (d) Shao, T.; Jiang, Z. Acta Chim. Sinica 2017, 75, 70. (邵天举, 江智勇, 化学学报, 2017, 75, 70.) (e) Ye, M.; Qiu, S.; Yin, G. Chin. J. Org. Chem. 2017, 37, 667. (叶明琰, 邱少中, 殷国栋, 有机化学, 2017, 37, 667.) (f) Bai, F.; Hu, D.; Liu, Y.; Wei, L. Chin. J. Org. Chem. 2018, 38, 2054. (白飞成, 胡德庆, 刘云云, 韦丽, 有机化学, 2018, 38, 2054.)

    2. [2]

      For selected reviews, see: (a) Torres, M.; Gil, S.; Parra, M. Curr. Org. Chem. 2005, 9, 1757. (b) Hill, M. D.; Movassaghi, M. Chem.- Eur. J. 2008, 14, 6836. For selected examples, see: (c) Fang, Y.-Q.; Bio, M. M.; Hansen, K. B.; Potter, M. S.; Clausen, A. J. Am. Chem. Soc. 2010, 132, 15525. (d) Li, B.; Wang, G.; Yang, M.; Xu, Z.; Zeng, B.; Wang, H.; Shen, J.; Chen, K.; Zhu, W. Eur. J. Med. Chem. 2013, 70, 677. (e) Li, C.; Kähny, M.; Breit, B. Angew. Chem., Int. Ed. 2014, 53, 13780. (f) Zhang, X.; Yang, Z.-P.; Huang, L.; You, S.-L. Angew. Chem., Int. Ed. 2015, 54, 1873. (g) Feng, B.; Li, Y.; Li, H.; Zhang, X.; Xie, H.; Cao, H.; Yu, L.; Xu, Q. J. Org. Chem. 2018, 83, 6769.

    3. [3]

      (a) Sato, T.; Yoshimatsu, K.; Otera, J. Synlett 1995, 845. (b) Liu, H.; Ko, S.-B.; Josien, H.; Curran, D. P. Tetrahedron Lett. 1995, 36, 8917.

    4. [4]

      For selected examples, see: (a) Itami, K.; Yamazaki, D.; Yoshida, J.-I. Org. Lett. 2003, 5, 2161. (b) Rodrigues, A.; Lee, E. E.; Batey, R. A. Org. Lett. 2010, 12, 260. (c) Yeung, C. S.; Hsieh, T. H. H.; Dong, V. M. Chem. Sci. 2011, 2, 544. (d) Tasker, S. Z.; Bosscher, M. A.; Shandro, C. A.; Lanni, E. L.; Ryu, K. A.; Snapper, G. S.; Utter, J. M.; Ellsworth, B. A.; Anderson, C. E. J. Org. Chem. 2012, 77, 8220. (e) Pan, S.; Ryu, N.; Shibata, T. Org. Lett. 2013, 15, 1902. (f) Cheng, L.-J.; Brown, A. P. N.; Cordier, C. J. Chem. Sci. 2017, 8, 4299.

    5. [5]

      (a) Ogata, M.; Matsumoto, H.; Kida, S.; Shimizu, S.; Tawara, K.; Kawamura, Y. J. Med. Chem. 1987, 30, 1497. (b) Straub, C. S.; Padwa, A. Org. Lett. 1999, 1, 83. (c) Reichelt, A.; Bur, S. K.; Martin, S. F. Tetrahedron 2002, 58 6323. (d) Abreo, M. A.; Meng, J. J.; Agree, C. S. WO 2002016365, 2002. (e) McArdle, B. M.; Quinn, R. J. ChemBioChem 2007, 8, 788. (f) Jiang, M. X.; Zhou, Y. J. J. Asian Nat. Prod. Res. 2008, 10, 1009. (g) Payne, R. J.; Bulloch, E. M. M.; Kerbarh, O.; Abell, C. Org. Biomol. Chem. 2010, 8, 3534. (h) Micale, N.; Ettari, R.; Lavecchia, A.; Di Giovanni, C.; Scarbaci, K.; Troiano, V.; Grasso, S.; Novellino, E.; Schirmeister, T.; Zappalà, M. Eur. J. Med. Chem. 2013, 64, 23. (i) Scarbaci, K.; Troiano, V.; Micale, N.; Ettari, R.; Tamborini, L.; Di Giovanni, C.; Cerchia, C.; Grasso, S.; Novellino, E.; Schirmeister, T.; Lavecchia, A.; Zappalà, M. Eur. J. Med. Chem. 2014, 76, 1.

    6. [6]

      For selected examples, see: (a) Bannwarth, L.; Kessler, A.; Pèthe, S.; Collinet, B.; Merabet, N.; Boggetto, N.; Sicsic, S.; Reboud-Ravaux, M.; Ongeri, S. J. Med. Chem. 2006, 49, 4657. (b) Gibson, S.; Fernando, R.; Jacobs, H. K.; Gopalan, A. S. Tetrahedron 2015, 71, 9271. (c) Loughlin, W. A.; Jenkins, I. D.; Karis, N. D.; Healy, P. C. Eur. J. Med. Chem. 2017, 127, 341. (d) Dawson, T. K.; Dziedzic, P.; Robertson, M. J.; Cisneros, J. A.; Krimmer, S. G.; Newton, A. S.; Tirado-Rives, J.; Jorgensen, W. L. ACS Med. Chem. Lett. 2017, 8, 1287.

    7. [7]

      For selected examples, see: (a) DeRuiter, J.; Brubaker, A. N.; Whitmer, W. L.; Stein, J. L. J. Med. Chem. 1986, 29, 2024. (b) New, J. S.; Christopher, W. L.; Jass, P. A. J. Org. Chem. 1989, 54, 990. (c) Badgujar, N. S.; Pazicky, M.; Traar, P.; Terec, A.; Uray, G.; Stadlbauer, W. Eur. J. Org. Chem. 2006, 2715. (d) Litchfield, J.; Sharma, R.; Atkinson, K.; Filipski, K. J.; Wright, S. W.; Pfefferkorn, J. A.; Tan, B.; Kosa, R. E.; Stevens, B.; Tu, M.; Kalgutkar, A. S. Bioorg. Med. Chem. Lett. 2010, 20, 6262. (e) Torhan, M. C.; Peet, N. P.; Williams, J. D. Tetrahedron Lett. 2013, 54, 3926. (f) Xin, B.-T.; de Bruin, G.; Plomp, J.-W.; Florea, B. I.; van der Marel, G. A.; Overkleeft, H. S. Eur. J. Org. Chem. 2016, 1132.

    8. [8]

      Selected reviews of Pd-catalyzed allylic substitutions: (a) Trost, B. M.; Van Vranken, D. L. Chem. Rev. 1996, 96, 395. (b) Helmchen, G.; Pfaltz, A. Acc. Chem. Res. 2000, 33, 336. (c) Trost, B. M.; Crawley, M. L. Chem. Rev. 2003, 103, 2921. (d) Lu, Z.; Ma, S. Angew. Chem., Int. Ed. 2008, 47, 258. (e) Trost, B. M.; Zhang, T.; Sieber, J. D. Chem. Sci. 2010, 1, 427. (f) Tosatti, P.; Nelson, A.; Marsden, S. P. Org. Biomol. Chem. 2012, 10, 3147. (g) Trost, B. M. Org. Process Res. Dev. 2012, 16, 185. (h) Lumbroso, A.; Cooke, M. L.; Breit, B. Angew. Chem., Int. Ed. 2013, 52, 1890. (i) Butt, N. A.; Liu, D.; Zhang, W. Synlett 2014, 25, 615. (j) Zhuo, C.-X.; Zheng, C.; You, S.-L. Acc. Chem. Res. 2014, 47, 2558. (k) Butt, N. A.; Zhang, W. Chem. Soc. Rev. 2015, 44, 7929. (l) Butt, N.; Yang, G.; Zhang, W. Chem. Rec. 2016, 16, 2687. (m) Fu, J.; Huo, X.; Li, B.; Zhang, W. Org. Biomol. Chem. 2017, 15, 9747.

    9. [9]

      Selected recent papers: (a) Zhao, X.; Liu, D.; Guo, H.; Liu, Y.; Zhang, W. J. Am. Chem. Soc. 2011, 133, 19354. (b) Zhao, X.; Liu, D.; Xie, F.; Liu, Y.; Zhang, W. Org. Biomol. Chem. 2011, 9, 1871. (c) Huo, X.; Quan, M.; Yang, G.; Zhao, X.; Liu, D.; Liu, Y.; Zhang, W. Org. Lett. 2014, 16, 1570. (d) Huo, X.; Yang, G.; Liu, D.; Liu, Y.; Gridnev, I. D.; Zhang, W. Angew. Chem., Int. Ed. 2014, 53, 6776. (e) Wei, X.; Liu, D.; An, Q.; Zhang, W. Org. Lett. 2015, 17, 5768. (f) Yao, K.; Liu, D.; Yuan, Q.; Imamoto, T.; Liu, Y.; Zhang, W. Org. Lett. 2016, 18, 6296. (g) An, Q.; Liu, D.; Shen, J.; Liu, Y.; Zhang, W. Org. Lett. 2017, 19, 238. (h) Xia, C.; Shen, J.; Liu, D.; Zhang, W. Org. Lett. 2017, 19, 4251. (i) Huo, X.; He, R.; Fu, J.; Zhang, J.; Yang, G.; Zhang, W. J. Am. Chem. Soc. 2017, 139, 9819. (j) Huo, X.; Fu, J.; He, X.; Chen, J.; Xie, F.; Zhang, W. Chem. Commun. 2018, 54, 599. (k) Yao, K.; Yuan, Q.; Qu, X.; Liu, Y.; Liu D.; Zhang, W. Chem. Sci. 2019, 10, 1767. We also developed several Ir-catalyzed asymmetric allylic substitution reactions, see: (l) Huo, X.; He, R.; Zhang, X.; Zhang, W. J. Am. Chem. Soc. 2016, 138, 11093. (m) He, R.; Liu, P.; Huo, X.; Zhang, W. Org. Lett. 2017, 19, 5513. (n) Huo, X.; Zhang, J.; Fu, J.; He, R.; Zhang, W. J. Am. Chem. Soc. 2018, 140, 2080.

    10. [10]

      For selected reviews, see: (a) de Graaff, C.; Ruijter, E.; Orru, R. V. A. Chem. Soc. Rev. 2012, 41, 3969. (b) Slobbe, P.; Ruijter, E.; Orru, R. V. A. Med. Chem. Commun. 2012, 3, 1189. (c) Eppe, G.; Didier, D.; Marek, I. Chem. Rev. 2015, 115, 9175. (d) Vetica, F.; de Figueiredo, R. M.; Orsini, M.; Tofani, D.; Gasperi, T. Synthesis 2015, 47, 2139.

  • 加载中
    1. [1]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    2. [2]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    3. [3]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    4. [4]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    5. [5]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    6. [6]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    7. [7]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    8. [8]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    9. [9]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    10. [10]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    11. [11]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    12. [12]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    13. [13]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    14. [14]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    15. [15]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    16. [16]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    17. [17]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    18. [18]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    19. [19]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    20. [20]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

Metrics
  • PDF Downloads(6)
  • Abstract views(897)
  • HTML views(65)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return