Citation: Yang Pengli, Wang Zhenxing, Liang Zun, Liang Hongtao, Yang Yang. A Molecular Dynamics Simulation Study of the Effect of External Electric Field on the Water Surface Potential[J]. Acta Chimica Sinica, ;2019, 77(10): 1045-1053. doi: 10.6023/A19060205 shu

A Molecular Dynamics Simulation Study of the Effect of External Electric Field on the Water Surface Potential

  • Corresponding author: Yang Yang, yyang@phy.ecnu.edu.cn
  • Received Date: 10 June 2019
    Available Online: 28 October 2019

    Fund Project: the Science and Technology Project of Shanghai Science and Technology Commission 18DZ1112700the National Natural Science Foundation of China 11874147the National Natural Science Foundation of China 11504110Project supported by the National Natural Science Foundation of China (Nos. 11504110, 11874147), the Science and Technology Project of Shanghai Science and Technology Commission (No. 18DZ1112700), the Fundamental Research Funds for the Central Universities, and the East China Normal University Multifunctional Platform for Innovation (001)

Figures(5)

  • The surface potential of the liquid-vapor interface of water plays a critical role in electrochemistry, interfacial reactivity, and solvation thermodynamics. However, direct experimental measurement of the surface potential of pure water is exceedingly challenging. Here we present a methodology to explore the effect of external electric field on the water surface potential. The methodology contains constant electrostatic potential molecular dynamics simulation[J. Chem. Phys., 126, 084704(2007)], in which, the electrode charges are allowed to fluctuate to keep the potential fixed, as well as a recently developed probe and average method[J. Phys.:Cond. Matter, 28, 464006(2016)] to accurately map out the electrostatic potential across the water surfaces. The methodology is applied to the coexistence of the vapor phase and the liquid phase of the room temperature pure water (described by a simple SPC/E water model) under different magnitudes of E-fields generated from the nearby electrodes, yielding a first-time calculation of the external E-field dependent water surface potential profiles, and the relationship between the water surface potential and the external E-field strength which has been rarely reported. We found an asymmetric effect of external E-field on the surface potential, i.e., the surface potential decreases with increasing the external E-field strength for the water surface close to the cathode, while the surface potential increases with increasing field strength for the surface close to the anode. The water surfaces are also characterized by calculating the number density and dipole polarization density profiles, which depict the presence of the external E-fields induced bulk polarization under high strength field. By comparing the dipole polarization density profiles and the potential profiles, we conclude that the asymmetric effect of external E-field on the surface potential is due to the asymmetric behavior in surface polarization under external E-field for the water surfaces near cathode or anode, and is also due to the polarization within bulk part of the liquid water. The methodology presented in the current study can be easily applied to more advanced water models such as polarizable water models which are beyond the SPC/E used in current work. The achievement of the fundamental data and the physics relationship between the surface potential of water and the applied external E-field could potentially facilitate the advancements in electrodynamics and thermodynamics of the liquid-vapor interfaces.
  • 加载中
    1. [1]

      Bateni, A.; Susnar, S. S.; Amirfazli, A.; Neumann, A. W. Langmuir 2004, 20, 7589.  doi: 10.1021/la0494167

    2. [2]

      Bateni, A.; Laughton, S. J.; Tavana, H.; Susnar, S. S.; Amirfazli, A.; Neumann, A. Colloid Interface Sci. 2005, 283, 215.  doi: 10.1016/j.jcis.2004.08.134

    3. [3]

      Eggers, J.; Villermaux, E. Rep. Prog. Phys. 2008, 71, 036601.  doi: 10.1088/0034-4885/71/3/036601

    4. [4]

      Yan, J. Y.; Patey, G. N. J. Phys. Chem. Lett. 2011, 2, 2555.  doi: 10.1021/jz201113m

    5. [5]

      Yan, J. Y.; Patey, G. N. J. Phys. Chem. A 2012, 116, 7057.  doi: 10.1021/jp3039187

    6. [6]

      Yan, J. Y.; Patey, G. N. J. Chem. Phys. 2013, 139, 144501.  doi: 10.1063/1.4824139

    7. [7]

      Yan, J.; Overduin, S. D.; Patey, G. N. J. Chem. Phys. 2014, 141, 074501.  doi: 10.1063/1.4892586

    8. [8]

      Zhang, Z. S.; Liu, X. Y. Chem. Soc. Rev. 2018, 47, 7116.  doi: 10.1039/C8CS00626A

    9. [9]

      Dash, J. G.; Rempel, A. W.; Wettlaufer, J. S. Rev. Mod. Phys. 2006, 78, 3.

    10. [10]

      Qiu, H.; Guo, W. L. Phys. Rev. Lett. 2013, 110, 195701.  doi: 10.1103/PhysRevLett.110.195701

    11. [11]

      Mei, F.; Zhou, X. Y.; Kou, J. L.; Wu, F. M.; Wang, C. L.; Lu, H. J. J. Chem. Phys. 2015, 142, 134704.  doi: 10.1063/1.4916521

    12. [12]

      Zangi, R.; Mark, A. E. J. Chem. Phys. 2004, 120, 7123.  doi: 10.1063/1.1687315

    13. [13]

      Choi, E. M.; Yoon, Y. H.; Lee, S.; Kang, H. Phys. Rev. Lett. 2005, 95, 085701.  doi: 10.1103/PhysRevLett.95.085701

    14. [14]

      Ehre, D.; Lavert, E.; Lahav, M.; Lubomirsky, L. Science 2010, 327, 672.  doi: 10.1126/science.1178085

    15. [15]

      Carpenter, K.; Bahadur, V. Langmuir 2015, 31, 2243.  doi: 10.1021/la504792n

    16. [16]

      Nandi, P. K.; Burnham, C. J.; English, N. J. J. Chem. Phys. 2018, 148, 044503.  doi: 10.1063/1.5004509

    17. [17]

      Zaragoza, A.; Espinosa, J. R.; Ramos, R.; Cobos, J. A.; Aragones, J. L.; Vega, C.; Sanz, E.; Ramírez, J.; Valeriani, C. J. Phys.: Condens. Mat. 2018, 30, 174002.  doi: 10.1088/1361-648X/aab464

    18. [18]

      Fernández, M. S.; Peeters, F. M.; Neek-Amal, M. Phys. Rev. B 2016, 94, 045436.  doi: 10.1103/PhysRevB.94.045436

    19. [19]

      Vorob'ev, V. S.; Malyshenko, S. P. Phys. Rev. Lett. 2006, 96, 075701.  doi: 10.1103/PhysRevLett.96.075701

    20. [20]

      Maerzke, K. A.; Siepmann, J. I. J. Phys. Chem. B 2010, 114, 4261.  doi: 10.1021/jp9101477

    21. [21]

      Aragones, J. L.; MacDowell, L. G.; Siepmann, J. I.; Vega1, C. Phys. Rev. Lett. 2011, 107, 155702.  doi: 10.1103/PhysRevLett.107.155702

    22. [22]

      Skinnera, L. B.; Benmorea, C. J.; Shyama, B.; J. K. R. Webera, J. K. R; Pariseb, J. B. Proc. Nat. Acad. Sci. U. S. A. 2012, 109, 16463.  doi: 10.1073/pnas.1210732109

    23. [23]

      Saitta, A. M.; Saija, F.; Giaquinta, P. V. Phys. Rev. Lett. 2012, 108, 207801.  doi: 10.1103/PhysRevLett.108.207801

    24. [24]

      Futera, Z.; English, N. J. J. Chem. Phys. 2017, 147, 031102.  doi: 10.1063/1.4994694

    25. [25]

      Warshavsky, V. B.; Bykov, T. V.; Zeng, X. C. J. Chem. Phys. 2001, 114, 1.  doi: 10.1063/1.1334599

    26. [26]

      Han, G. Z.; Meng, J. J. Continuum Mech. Thermodyn. 2018, 30, 817.  doi: 10.1007/s00161-018-0644-8

    27. [27]

      Hayes, C. F. J. Phys. Chem. 1975, 79, 16.

    28. [28]

      Pethica, B. A. Langmuir 1998, 14, 3115.  doi: 10.1021/la971142i

    29. [29]

      Sato, M.; Kudo, N.; Saito, N. IEEE Transactions on Industry Applications 1998, 34, 2.

    30. [30]

      Vega, C.; Abascal, J. L. F. Phys. Chem. Chem. Phys. 2011, 13, 19663.  doi: 10.1039/c1cp22168j

    31. [31]

      Moore, S. G.; Stevens, M. J.; Grest, G. S. Phys. Rev. E 2015, 91, 022309.

    32. [32]

      Shi, B.; Agnihotri, M. V.; Chen, S. H.; Black, R.; Singer, S. J. J. Chem. Phys. 2016, 144, 164702.  doi: 10.1063/1.4945760

    33. [33]

      Koski, J. P.; Moore, S. G.; Grest, G. S.; Stevens, M. J. Phys. Rev. E 2017, 96, 063106.  doi: 10.1103/PhysRevE.96.063106

    34. [34]

      Nikzad, M.; Azimian, A. R.; Rezaei, M.; Nikzad, S. J. Chem. Phys. 2017, 147, 204701.  doi: 10.1063/1.4985875

    35. [35]

      Jackson, J. D. Classical Electrodynamics, 3rd ed., Wiley, Hoboken, NJ, 1999.

    36. [36]

      Griffiths, D. J. Introduction to Electrodynamics, 3rd ed.: Prentice-Hall, Upper Saddle River, NJ, 1999.

    37. [37]

      Fumagalli, L.; Esfandiar, A.; Fabregas, R.; Hu, S.; Ares, P.; Janardanan1, A.; Yang, Q.; Radha, B.; Taniguchi, T.; Watanabe, K.; Gomila, G.; Novoselov, K. S.; Geim, A. K. Science 2018, 360, 1339.  doi: 10.1126/science.aat4191

    38. [38]

      Willard, A. P.; Reed, S. K.; Madden, P. A.; Chandler, D. Faraday Discuss. 2009, 141, 423.  doi: 10.1039/B805544K

    39. [39]

      Vatamanu, J.; Borodin, O.; Smith, G. D. J. Am. Chem. Soc. 2010, 132, 14825.  doi: 10.1021/ja104273r

    40. [40]

      Merlet, C.; Salanne, M.; Rotenberg, B.; Madden, P. A. J. Phys. Chem. C 2011, 115, 16613.  doi: 10.1021/jp205461g

    41. [41]

      Merlet, C.; Rotenberg, B.; Madden, P. A.; Taberna, P.-L.; Simon, P.; Gogotsi, Y.; Salanne, M. Nat. Mater. 2012, 11, 306.  doi: 10.1038/nmat3260

    42. [42]

      Limmer, D. T.; Merlet, C.; Salanne, M.; Chandler, D.; Madden, P. A.; van Roij, P.; Rotenberg, B. Phys. Rev. Lett. 2013, 111, 106102.  doi: 10.1103/PhysRevLett.111.106102

    43. [43]

      Limmer, D. T.; Willard, A. P.; Madden, P.; Chandler, D. Proc. Nat. Acad. Sci. U. S. A. 2013, 110, 4200.  doi: 10.1073/pnas.1301596110

    44. [44]

      Vatamanu, J.; Vatamanu, M.; Bedrov, D. ACS Nano 2015, 9, 5999.  doi: 10.1021/acsnano.5b00945

    45. [45]

      Vatamanu, J.; Bedrov, D. J. Phys. Chem. Lett. 2015, 6, 3594.  doi: 10.1021/acs.jpclett.5b01199

    46. [46]

      Limmer, D. T.; Willard, A. P.; Madden, P. A.; Chandler, D. J. Phys. Chem. C 2015, 119, 24016.  doi: 10.1021/acs.jpcc.5b08137

    47. [47]

      Parsons, R. Modern Aspects of Electrochemistry, Vol. 1, Ed.: Bokris, J. O.-M. London, Butterworths, 1954.

    48. [48]

      Matsumoto, M.; Kataoka, Y. J. Chem. Phys. 1988, 88, 3233.  doi: 10.1063/1.453919

    49. [49]

      Brodskaya, E. N.; Zakharov, V. V. J. Chem. Phys. 1995, 2, 4595.

    50. [50]

      Wilson, M. A.; Pohorille, A.; Pratt, L. R. J. Chem. Phys. 1988, 88, 3281.  doi: 10.1063/1.453923

    51. [51]

      Sokhan, V. P.; Tildesley, D. J. Mol. Phys. 1997, 92, 625.  doi: 10.1080/002689797169916

    52. [52]

      Kathmann, S. M.; Kuo, I. W.; Mundy, C. J. J. Am. Chem. Soc. 2008, 130, 16556.  doi: 10.1021/ja802851w

    53. [53]

      Harder, E.; Roux, B. J. Chem. Phys. 2008, 129, 234706.  doi: 10.1063/1.3027513

    54. [54]

      Randles, J. E. B. Phys. Chem. Liq. 1977, 7, 107.  doi: 10.1080/00319107708084730

    55. [55]

      Pratt, L. R. J. Phys. Chem. 1992, 96, 25.  doi: 10.1021/j100180a010

    56. [56]

      Barraclough, C. G.; McTigue, P. T.; Ng, Y. L. J. Electroanal. Chem. 1992, 329, 9.  doi: 10.1016/0022-0728(92)80205-I

    57. [57]

      Parfenyuk, V. I. Colloid J. 2002, 64, 588.  doi: 10.1023/A:1020614010528

    58. [58]

      Yang, L.; Fishbine, B. H.; Migliori, A.; Pratt, L. R. J. Am. Chem. Soc. 2009, 131, 12373.  doi: 10.1021/ja9044554

    59. [59]

      Yang, L.; Fishbine, B. H.; Migliori, A.; Pratt, L. R. J. Chem. Phys. 2010, 132, 044701.  doi: 10.1063/1.3294560

    60. [60]

      Shim, Y.; Kim, H. J.; Jung, Y. Faraday Discuss. 2012, 154, 249.  doi: 10.1039/C1FD00086A

    61. [61]

      Feng, G.; Cummings, P. T. J. Phys. Chem. Lett. 2011, 2, 2859.  doi: 10.1021/jz201312e

    62. [62]

      Feng, G.; Li, S.; Atchison, J. S.; Presser, V.; Cummings, P. T. J. Phys. Chem. C 2013, 117, 9178.  doi: 10.1021/jp403547k

    63. [63]

      Reed, S. K.; Lanning, O. J.; Madden, P. A. J. Chem. Phys. 2007, 126, 084704.  doi: 10.1063/1.2464084

    64. [64]

      Reed, S. K.; Madden, P. A.; Papadopoulos, A. J. Chem. Phys. 2008, 128, 124701.  doi: 10.1063/1.2844801

    65. [65]

      Gingrich, T. R.; Wilson, M. Chem. Phys. Lett. 2010, 500, 178.  doi: 10.1016/j.cplett.2010.10.010

    66. [66]

      Wang, Z. X.; Yang, Y.; Olmsted, D. L.; Asta, M. Laird, B. B. J. Chem. Phys. 2014, 141, 184102.

    67. [67]

      Doppenschmidt, A.; Butt, H.-J. Langmuir 2000, 16, 6709.  doi: 10.1021/la990799w

    68. [68]

      Pickering, I.; Paleico, M.; Sirkin, Y. A. P.; Scherlis, D. A.; Factorovich, M. H. J. Phys. Chem. B 2018, 122, 4880.  doi: 10.1021/acs.jpcb.8b00784

    69. [69]

      Berendsen, H. J. C.; Grigera, J. R.; Straatsma, T. P. J. Phys. Chem. 1987, 91, 6269.  doi: 10.1021/j100308a038

    70. [70]

      Yeh, I. C.; Berkowitz, M. J. Chem. Phys. 1999, 111, 3155.  doi: 10.1063/1.479595

    71. [71]

      Ciccotti, G.; Ryckaert, J. P. Comput. Phys. Rep. 1986, 4, 346.  doi: 10.1016/0167-7977(86)90022-5

    72. [72]

      Alejandre, J.; Chapela, D. J. T. A. J. Chem. Phys. 1995, 120, 15.

    73. [73]

      Wang, Z. X.; Olmsted, D. L.; Asta, M.; Laird, B. B. J. Phys. Condens. Matter 2016, 28, 464006.  doi: 10.1088/0953-8984/28/46/464006

    74. [74]

      Smith, G., Numerical Solution of Partial Differential Equations: Finite Difference Methods, Oxford, Clarendon, 1985.

    75. [75]

      Sachs, J. N.; Crozier, P. S.; Woolf, T. B. J. Chem. Phys. 2004, 121, 10847.  doi: 10.1063/1.1826056

    76. [76]

      Li, S.; Feng, G.; Cummings, P. T. J. Phys. Condens. Matter 2014, 26, 284106.  doi: 10.1088/0953-8984/26/28/284106

    77. [77]

      Skollermo, G. Math. Comput. 1975, 29, 697.

    78. [78]

      Yang, Y.; Laird, B. B. J. Phys. Chem. B 2014, 118, 8373.

    79. [79]

      Reynolds, W., Thermodynamic Properties in SI: Graphs, Tables, and Computational Equations for Forty Substances, Stanford, CA, Dept. of Mechanical Engineering, Stanford University, 1979.

    80. [80]

      Warshavsky, V.; Zeng, X. C. Phy. Rev. E 2003, 68, 051203  doi: 10.1103/PhysRevE.68.051203

    81. [81]

      Richmond, G. L. Chem. Rev. 2002, 102, 2693.  doi: 10.1021/cr0006876

  • 加载中
    1. [1]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    2. [2]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    3. [3]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    4. [4]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    5. [5]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    6. [6]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    7. [7]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    8. [8]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    9. [9]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    10. [10]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    11. [11]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

Metrics
  • PDF Downloads(42)
  • Abstract views(2207)
  • HTML views(437)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return