Citation: Yang Bo, Zhang Yongli. Synergistic Removal of Co-contamination by Heterogeneous Fenton System: Chemical Conversion, pH Effect and Mechanism Analysis[J]. Acta Chimica Sinica, ;2019, 77(10): 1017-1023. doi: 10.6023/A19060203 shu

Synergistic Removal of Co-contamination by Heterogeneous Fenton System: Chemical Conversion, pH Effect and Mechanism Analysis

  • Corresponding author: Zhang Yongli, zxm581212@163.com
  • Received Date: 8 June 2019
    Available Online: 4 October 2019

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 51878422)the National Natural Science Foundation of China 51878422

Figures(7)

  • The chemical transformation of ZVI micro-surface and the degradation mechanism in the process of synergistic removal of copper ions and methylene blue pollutants by ZVI-Fenton system were studied systematically. The samples of ZVI, before and after reaction in the ZVI/H2O2 and ZVI/H2O2-Cu systems, were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), X-ray diffraction (XRD), X-ray photoelectron spectra (XPS) and Fourier Transform infrared spectroscopy (FTIR) to research the changes of ZVI surface structure, Fe and Cu species' chemical conversion. The results showed that the residual corrosion products on the surface of ZVI were more and the corrosion products were mainly Fe3O4 and Fe2O3 after reaction in the ZVI/H2O2 system. However, in the ZVI/H2O2-Cu system, the corrosion effect of ZVI was more significant, but the residual corrosion products of ZVI surface were less, and the proportion of Fe3O4 increased. In addition, the main reduction product of Cu2+ was Cu0, which was accompanied by the generation of CuO. Furthermore, the effects of pH on the removal of pollutants from the five systems (ZVI, ZVI-Cu, H2O2-Cu, ZVI/H2O2 and ZVI/H2O2-Cu) were compared and the changes in TCu and TFe concentrations under different pH conditions were monitored. The results indicated that the ZVI/H2O2-Cu system not only simultaneous effectively remove MB and TCu compared with other three systems, but also enlarged the effective pH range (pH=2.5~5.5) of ZVI-Fenton system. In addition, free radical capture experiments showed that hydroxyl radicals played an important role in the oxidative degradation of methylene blue, and 10 mmol/L tert-butanol could completely capture hydroxyl radicals in the system. Finally, the mechanism of synergistic removal of TCu and MB degradation by ZVI-Fenton system was revealed. The substitution reaction between ZVI and Cu2+, the action of Cu0 and ZVI galvanic cells, the acid corrosion effect, and the redox cycle of iron and copper together accelerate the degradation of MB by the system and promote the conversion of ZVI surface substances. This study provides a theoretical basis for collaborative treatment of industrial complex pollutants.
  • 加载中
    1. [1]

      Fu, F.; Dionysiou, D. D.; Liu, H. J. Hazard. Mater. 2014, 267, 194.  doi: 10.1016/j.jhazmat.2013.12.062

    2. [2]

      Yamaguchi, R.; Kurosu, S.; Suzuki, M.; Kawase, Y. Chem. Eng. J. 2018, 334, 1537.  doi: 10.1016/j.cej.2017.10.154

    3. [3]

      Wei, X. Y.; Gao, N. Y.; Li, C. J.; Deng, Y.; Zhou, S. Q.; Li, L. Chem. Eng. J. 2016, 285, 660.  doi: 10.1016/j.cej.2015.08.120

    4. [4]

      Mirzaei, A.; Chen, Z.; Haghighat, F.; Yerushalmi, L. Chemosphere 2017, 174, 665.  doi: 10.1016/j.chemosphere.2017.02.019

    5. [5]

      Ling, R.; Chen, J. P.; Shao, J.; Reinhard, M. Water Res. 2018, 134, 44.  doi: 10.1016/j.watres.2018.01.065

    6. [6]

      Liu, J.; Ou, C.; Han, W.; Faheem, F.; Shen, J.; Bi, H.; Sun, X.; Li, J.; Wang, L. RSC Adv. 2015, 5, 57444.  doi: 10.1039/C5RA08487C

    7. [7]

      Cho, Y.; Choi, S. I. Chemosphere 2010, 81, 940.  doi: 10.1016/j.chemosphere.2010.07.054

    8. [8]

      Zheng, Z. Q.; Lu, G. N.; Wang, R.; Huang, K. B.; Tao, X. Q.; Yang, Y. L.; Zou, M. Y.; Xie, Y. Y.; Yin, H. Environ. Pollut. 2019, 245, 780.  doi: 10.1016/j.envpol.2018.11.064

    9. [9]

      Gu, T. H.; Shi, J. M.; Hua, Y. L.; Liu, J.; Wang, W.; Zhang, W. X. Acta Chim. Sinica 2017, 75, 991.
       

    10. [10]

      Li, Z.; Luo, S. Q.; Yang, Y.; Chen, J. W. Chemosphere 2019, 216, 499.  doi: 10.1016/j.chemosphere.2018.10.133

    11. [11]

      Cai, C.; Wang, L. G.; Gao, H.; Hou, L. W.; Zhang, H. J. Environ. Sci. 2014, 26, 1267.  doi: 10.1016/S1001-0742(13)60598-7

    12. [12]

      Cao, C. J.; Liu, X. G.; Ju, X. R.; Chen, X. R. Acta Phys.-Chim. Sin. 2013, 29, 2475.  doi: 10.3866/PKU.WHXB201310101

    13. [13]

      Huang, X. Y.; Wang, W.; Lin, L.; Zhang, W. X. Acta Chim. Sinica 2017, 75, 529.
       

    14. [14]

      Liu, J.; Gu, T. H.; Wang, W.; Liu, A. R.; Zhang, W. X. Acta Chim. Sinica 2019, 77, 121.  doi: 10.3969/j.issn.0253-2409.2019.01.016
       

    15. [15]

      Li, J. H.; Lin, C. F.; Qin, W.; Xiao, X. B.; Wei, L. Acta Phys.-Chim. Sin. 2016, 32, 2717.  doi: 10.3866/PKU.WHXB201607271

    16. [16]

      Jiang, X.; Qiao, J.; Lo, I. M.; Wang, L.; Guan, X.; Lu, Z.; Zhou, G.; Xu, C. J. Hazard. Mater. 2015, 283, 880.  doi: 10.1016/j.jhazmat.2014.10.044

    17. [17]

      Fu, R. B.; Yang, Y. P.; Xu, Z.; Zhang, X.; Guo, X. P.; Bi, D. S. Chemosphere 2015, 138, 726.  doi: 10.1016/j.chemosphere.2015.07.051

    18. [18]

      Diao, Z.-H.; Xu, X.-R.; Jiang, D.; Liu, J.-J.; Kong, L.-J.; Li, G.; Zuo, L.-Z.; Wu, Q.-H. Chem. Eng. J. 2017, 315, 167.  doi: 10.1016/j.cej.2017.01.006

    19. [19]

      Liu, C. M.; Diao, Z. H.; Huo, W. Y.; Kong, L. J.; Du, J. J. Environ. Pollut. 2018, 239, 698.  doi: 10.1016/j.envpol.2018.04.084

    20. [20]

      Sleiman, N.; Deluchat, V.; Wazne, M.; Mallet, M.; Courtin-Nomade, A.; Kazpard, V.; Baudu, M. Colloids Surf., A 2017, 514, 1.  doi: 10.1016/j.colsurfa.2016.11.014

    21. [21]

      Li, H.; Wan, J.; Ma, Y.; Wang, Y.; Huang, M. Chem. Eng. J. 2014, 237, 487.  doi: 10.1016/j.cej.2013.10.035

    22. [22]

      Xu, C. H.; Zhang, B. L.; Wang, Y. H.; Shao, Q. Q.; Zhou, W. Z.; Fan, D. M.; Bandstra, J. Z.; Shi, Z. Q.; Tratnyek, P. G. Environ. Sci. Technol. 2016, 50, 11879.  doi: 10.1021/acs.est.6b03184

    23. [23]

      Zhang, L.; Shao, Q.; Xu, C. J. Clean. Prod. 2019, 213, 753.  doi: 10.1016/j.jclepro.2018.12.183

    24. [24]

      Liu, W.; Sun, W.; Borthwick, A. G. L.; Wang, T.; Li, F.; Guan, Y. J. Hazard. Mater. 2016, 317, 385.  doi: 10.1016/j.jhazmat.2016.06.002

    25. [25]

      Grosvenor, A. P.; Kobe, B. A.; Biesinger, M. C.; McIntyre, N. S. Surf. Interface Anal. 2004, 36, 1564.  doi: 10.1002/sia.1984

    26. [26]

      Choi, K.; Lee, W. J. Hazard. Mater. 2012, 211-212, 146.  doi: 10.1016/j.jhazmat.2011.10.056

    27. [27]

      Luo, F.; Chen, Z.; Megharaj, M.; Naidu, R. Chem. Eng. J. 2016, 294, 290.  doi: 10.1016/j.cej.2016.03.005

    28. [28]

      Gao, Y. Y.; Li, H. X.; Ou, Z. Z.; Hao, P.; Li, Y.; Yang, G. Q. Acta Phys.-Chim. Sin. 2011, 27, 2469.  doi: 10.3866/PKU.WHXB20110939

    29. [29]

      Gotic, M.; Music, S. J. Mol. Struct. 2007, 834, 445.

    30. [30]

      Dong, H.; He, Q.; Zeng, G.; Tang, L.; Zhang, L.; Xie, Y.; Zeng, Y.; Zhao, F. Chem. Eng. J. 2017, 316, 410.  doi: 10.1016/j.cej.2017.01.118

    31. [31]

      Cai, X.; Gao, Y.; Sun, Q.; Chen, Z.; Megharaj, M.; Naidu, R. Chem. Eng. J. 2014, 244, 19.  doi: 10.1016/j.cej.2014.01.040

    32. [32]

      Guan, X.; Sun, Y.; Qin, H.; Li, J.; Lo, I. M.; He, D.; Dong, Water Res. 2015, 75, 224.  doi: 10.1016/j.watres.2015.02.034

    33. [33]

      Wang, N.; Zheng, T.; Jiang, J.; Wang, P. Chem. Eng. J. 2015, 260, 386.  doi: 10.1016/j.cej.2014.09.002

    34. [34]

      Zhou, P.; Zhang, J.; Zhang, Y.; Zhang, G.; Li, W.; Wei, C.; Liang, J.; Liu, Y.; Shu, S. J. Hazard. Mater. 2018, 344, 1209.  doi: 10.1016/j.jhazmat.2017.11.023

  • 加载中
    1. [1]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    2. [2]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    3. [3]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    4. [4]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    5. [5]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    6. [6]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    7. [7]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    8. [8]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    9. [9]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    10. [10]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    11. [11]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    12. [12]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    13. [13]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    14. [14]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    15. [15]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    16. [16]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    17. [17]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    18. [18]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    19. [19]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    20. [20]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

Metrics
  • PDF Downloads(7)
  • Abstract views(2024)
  • HTML views(288)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return