Unveiling the Synergistic Effect from Key Sensing Regions in Aerolysin-Based Single Oligonucleotide Detection
- Corresponding author: Long Yi-Tao, yitaolong@nju.edu.cn
Citation:
Li Mengyin, Ying Yilun, Long Yi-Tao. Unveiling the Synergistic Effect from Key Sensing Regions in Aerolysin-Based Single Oligonucleotide Detection[J]. Acta Chimica Sinica,
;2019, 77(10): 984-988.
doi:
10.6023/A19060202
Kasianowicz, J.; Brandin, E.; Branton, D.; Deamer, D. Proc. Natl. Acad. Sci. U. S. A. 1996, 93, 13770.
doi: 10.1073/pnas.93.24.13770
Bayley, H.; Cremer, P. Nature 2001, 413, 226.
doi: 10.1038/35093038
Cao, C.; Long, Y.-T. Acc. Chem. Res. 2018, 5, 331.
Ying, Y.; Zhang, X.; Liu, Y.; Xue, M.; Li, H.; Long, Y.-T. Acta Chim. Sinica 2013, 71, 44.
Gao, P.; Ma, Q.; Ding, D.; Wang, D.; Lou, X.; Zhai, T.; Xia, F. Nat. Commun. 2018, 9, 4557.
doi: 10.1038/s41467-018-06873-z
Cao, C.; Liao, D.-F.; Ying, Y.-L.; Long, Y.-T. Acta Chim. Sinica 2016, 74, 734.
Deamer, D.; Branton, D. Acc. Chem. Res. 2002, 35, 817.
doi: 10.1021/ar000138m
Li, Q.; Lin, Y.; Ying, Y.-L.; Liu, S.-C.; Long, Y.-T. Sci. Sin. Chim. 2017, 47, 1445.
Clarke, J.; Wu, H.-C.; Jayasinghe, L.; Patel, A.; Reid, S.; Bayley, H. Nat. Nanotechnol. 2009, 4, 265.
doi: 10.1038/nnano.2009.12
Manrao, E. A.; Derrington, I. M.; Laszlo, A. H.; Langford, K. W.; Hopper, M. K.; Gillgren, N.; Pavlenok, M.; Niederweis, M.; Gundlach, J. H. Nat. Biotechnol. 2012, 30, 349.
doi: 10.1038/nbt.2171
Garalde, D. R.; Snell, E. A.; Jachimowicz, D.; Sipos, B.; Lloyd, J. H.; Bruce, M.; Pantic, N.; Admassu, T.; James, P.; Warland, A.; Jordan, M.; Ciccone, J.; Serra, S.; Keenan, J.; Martin, S.; McNeill, L.; Wallace, E. J.; Jayasinghe, L.; Wright, C.; Blasco, J.; Young, S.; Brocklebank, D.; Juul, S.; Clarke, J.; Heron, A. J.; Turner, D. J. Nat. Methods 2018, 15, 201.
doi: 10.1038/nmeth.4577
Sutherland, T. C.; Long, Y.-T.; Stefureac, R.-I.; Bediako-Amoa, I.; Kraatz, H.-B.; Lee, J. S. Nano Lett. 2004, 4, 1273.
doi: 10.1021/nl049413e
Yang, J.; Li, S.; Wu, X.-Y.; Long, Y.-T. Chin. J. Anal. Chem. 2017, 45, 1766.
doi: 10.11895/j.issn.0253-3820.171201
Pigue, F.; Ouldali, H.; Pastoriza-Gallego, M.; Manivet, P.; Pelta, J.; Oukhaled, A. Nat. Commun. 2018, 9, 966.
doi: 10.1038/s41467-018-03418-2
Li, S.; Cao, C.; Yang, J.; Long, Y.-T. ChemElectroChem 2018, 6, 126.
Si, W.; Aksimentiev, A. ACS Nano 2017, 11, 7091.
doi: 10.1021/acsnano.7b02718
Hu, Z.; Du, J.; Ying, Y.; Peng, Y.; Cao, C.; Long, Y.-T. Acta Chim. Sinica 2017, 75, 1087.
Wanunu, M.; Dadosh, T.; Ray, V.; Jin, J.; McReynolds, L.; Drndić, M. Nat. Nanotechnol. 2010, 5, 807.
doi: 10.1038/nnano.2010.202
Xi, D.; Shang, J.; Fan, E.; You, J.; Zhang, S.; Wang, H. Anal. Chem. 2016, 88, 10540.
doi: 10.1021/acs.analchem.6b02620
Uram, J.; Ke, K.; Hunt, A.; Mayer, M. Angew. Chem. 2006, 118, 2339.
doi: 10.1002/ange.200502862
Jiang, Y.; Feng, Y.; Su, J.; Nie, J.; Cao, L.; Mao, L.; Jiang, L.; Guo, W. J. Am. Chem. Soc. 2017, 139, 18739.
doi: 10.1021/jacs.7b11732
Stoddart, D.; Heron, A. J.; Mikhailova, E.; Maglia, G.; Bayley, H. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 7702.
doi: 10.1073/pnas.0901054106
Cao, C.; Li, M.-Y.; Cirauqui, N.; Wang, Y.-Q.; Peraro, M.; Tian, H.; Long, Y.-T. Nat. Commun. 2018, 9, 2823.
doi: 10.1038/s41467-018-05108-5
Maglia, G.; Restrepo, M.; Mikhailova, E.; Bayley, H. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 19720.
doi: 10.1073/pnas.0808296105
Derrington, I.; Butler, T.; Collins, M.; Manrao, E.; Pavlenok, M.; Niederweis, M.; Gundlach, J. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 16060.
doi: 10.1073/pnas.1001831107
Duan, J.; Zhuo, S.; Yao, F.-J.; Zhang, Y.-N.; Kang, X.-F. Chin. J. Anal. Chem. 2016, 44, 1801.
Gao, R.; Ying, Y.-L.; Yan, B.-Y.; Long, Y.-T. Chin. Sci. Bull. 2014, 59, 4968.
doi: 10.1007/s11434-014-0656-0
Zhang, Z.; Li, T.; Sheng, Y.; Liu, L.; Wu, H.-C. Small 2019, 15, 1804078.
doi: 10.1002/smll.201804078
Ying, Y.-L.; Chao, C.; Hu, Y.-X.; Long, Y.-T. Natl. Sci. Rev. 2018, 5, 450.
doi: 10.1093/nsr/nwy029
Iacovache, I.; Carlo, S.; Cirauqui, N.; Peraro, M.; van der Goot, G.; Zuber, B. Nat. Commun. 2016, 7, 12062.
doi: 10.1038/ncomms12062
Stefureac, R.; Long, Y.-T.; Kraatz, H. B.; Howard, P.; Lee, J. S. Biochemistry 2006, 60, 9172.
Cressiot, B.; Braselmann, E.; Oukhaled, A.; Elcock, A. H.; Pelta, J.; Clark, P. L. ACS Nano 2015, 9, 9050.
doi: 10.1021/acsnano.5b03053
Fennouri, A.; Daniel, R.; Pastoriza-Gallego, M.; Auvray, L.; Pelta, J.; Bacri, L. Anal. Chem. 2013, 85, 8488.
doi: 10.1021/ac4020929
Baaken, G.; Halimeh, I.; Bacri, L.; Pelta, J.; Oukhaled, A.; Behrends, J. ACS Nano 2015, 9, 6443.
doi: 10.1021/acsnano.5b02096
Cao, C.; Ying, Y.-L.; Hu, Z.-L.; Liao, D.-F.; Tian, H.; Long, Y.-T. Nat. Nanotechnol. 2016, 11, 713.
doi: 10.1038/nnano.2016.66
Wang, Y.-Q.; Li, M.-Y.; Qiu, H.; Cao, C.; Wang, M.-B.; Wu, X.-Y.; Huang, J.; Ying, Y.-L.; Long, Y.-T. Anal. Chem. 2018, 90, 7790.
doi: 10.1021/acs.analchem.8b01473
Hu, Z.-L.; Li, Z.-Y.; Ying, Y.-L.; Zhang, J.; Cao, C.; Long, Y.-T.; Tian, H. Anal. Chem. 2018, 90, 4268.
doi: 10.1021/acs.analchem.8b00096
Jingwen Wang , Minghao Wu , Xing Zuo , Yaofeng Yuan , Yahao Wang , Xiaoshun Zhou , Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023
Meijin Li , Xirong Fu , Xue Zheng , Yuhan Liu , Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027
Meifeng Zhu , Jin Cheng , Kai Huang , Cheng Lian , Shouhong Xu , Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166
Zhengli Hu , Jia Wang , Yi-Lun Ying , Shaochuang Liu , Hui Ma , Wenwei Zhang , Jianrong Zhang , Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072
Cen Zhou , Biqiong Hong , Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086
Lu XU , Chengyu ZHANG , Wenjuan JI , Haiying YANG , Yunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431
Jing SU , Bingrong LI , Yiyan BAI , Wenjuan JI , Haiying YANG , Zhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414
Chunmei GUO , Weihan YIN , Jingyi SHI , Jianhang ZHAO , Ying CHEN , Quli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162
Yang WANG , Xiaoqin ZHENG , Yang LIU , Kai ZHANG , Jiahui KOU , Linbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
Jiahong ZHENG , Jingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170
Meiqing Yang , Lu Wang , Haozi Lu , Yaocheng Yang , Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046
Jiarong Feng , Yejie Duan , Chu Chu , Dezhen Xie , Qiu'e Cao , Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016
Yuting ZHANG , Zunyi LIU , Ning LI , Dongqiang ZHANG , Shiling ZHAO , Yu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204
Pingwei Wu . Application of Diamond Software in Simplex Teaching. University Chemistry, 2024, 39(3): 118-121. doi: 10.3866/PKU.DXHX202311043
Yuanpei ZHANG , Jiahong WANG , Jinming HUANG , Zhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077
Rui Li , Huan Liu , Yinan Jiao , Shengjian Qin , Jie Meng , Jiayu Song , Rongrong Yan , Hang Su , Hengbin Chen , Zixuan Shang , Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011
Linbao Zhang , Weisi Guo , Shuwen Wang , Ran Song , Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009
Shuhui Li , Xucen Wang , Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059
Zihan Lin , Wanzhen Lin , Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089
The β-barrel of aerolysin was colored yellow, while the two sensing regions were marked green (R1) and red (R2), respectively
All data were acquired in 3.0 mol/L KCl, 10 mmol/L TRIS, 1.0 mmol/L EDTA at pH 8.0 at the applied voltage of 100 mV. The final concentration of each oligonucleotide is 3.0 μmol/L. The current was sampled at 100 kHz and filtered at 5 kHz
All data were acquired in 3.0 mol/L KCl, 10 mmol/L TRIS, 1.0 mmol/L EDTA at pH 8.0 at the applied voltage of 100 mV. The final concentration of each oligonucleotide is 3.0 μmol/L. The current was sampled at 100 kHz and filtered at 5 kHz
The data were acquired in 3.0 mol/L KCl, 10 mmol/L TRIS, 1.0 mmol/L EDTA at pH 8.0 at the applied voltage of 100 mV. The final concentration of each oligonucleotide is 3.0 μmol/L. The current was sampled at 100 kHz and filtered at 5 kHz
The data were acquired at the applied voltage of 100 mV in 3.0 mol/L KCl, 10 mmol/L TRIS, 1.0 mmol/L EDTA at pH 8.0. The error bars were based on at least three separated experiments