Citation: Lu Fu-Dong, Jiang Xuan, Lu Liang-Qiu, Xiao Wen-Jing. Application of Propargylic Radicals in Organic Synthesis[J]. Acta Chimica Sinica, ;2019, 77(9): 803-813. doi: 10.6023/A19060201 shu

Application of Propargylic Radicals in Organic Synthesis

  • Corresponding author: Lu Liang-Qiu, luliangqiu@mail.ccnu.edu.cn Xiao Wen-Jing, wxiao@mail.ccnu.edu.cn
  • Received Date: 8 June 2019
    Available Online: 13 September 2019

    Fund Project: the National Natural Science Foundation of China 21772053the Natural Science Foundation of Hubei Province 2017AHB047the Natural Science Foundation of Hubei Province 2015CFA033the National Natural Science Foundation of China 21772052Project supported by the National Natural Science Foundation of China (Nos. 21572074, 21772052 and 21772053) and the Natural Science Foundation of Hubei Province (Nos. 2015CFA033, 2017AHB047)the National Natural Science Foundation of China 21572074

Figures(20)

  • The production and transformation of alkynes occupys an important position in organic synthetic chemistry. Within this realm, propargylic functionalization of alkynes is a feasible way towards this purpose. Especially, the propargylic functionalization via radical pathways has flourished in the last decade, which is believed to be a significant complement to the classic metal-catalyzed propargylation reaction involving cationic intermediates. According to the reaction modes, these advancements will be highlighted by classifying into four types. The first one is the propargylic functionalization reactions involving propargylic radicals. Generally, propargylic radicals can be generated through single electron reduction of alkyne substrates by low-valence metal catalysts or excited state of photocatalysts, then participated in the following cross-coupling reactions to achieve alkyne products. In this part, asymmetric variants have been also well developed. The second one is the preparation of allene compounds through the allenyl radical pathway. For these processes, propargylic radicals can isomerize to allenyl radicals, which can participate in the copper-or nickel-catalyzed coupling reaction to produce significant allene compounds. The third one is the dehydrative alkylation reaction of propargyl alcohols that involve propargylic radical intermediates, too. Such radical intermediates can be further oxidized to propargylic cation intermediates, followed by a deprotonation to form substituted 1, 3-enyne compounds. The forth one is the synthesis of vinylic alkoxyamines through a propargylic radical route. Initially, propargyl alcohols can be converted to propargylic radical species by the joint action of copper catalysts and TEMPO. The generated propargylic radical species can be captured by TEMPO to form vinylic alkoxyamines. Finally, an outlook on the radical propargylic functionalizations will be provided at the end of this review.
  • 加载中
    1. [1]

      (a) Trost, B. M.; Li, C.-J. Modern Alkyne Chemistry: Catalytic and Atom-Economic Transformations, Wiley-VCH, New York, 2014. (b) Trotuş, I. T.; Zimmermann, T.; Schüth, F. Chem. Rev. 2014, 114, 1761. (c) Tiwari, V. K.; Mishra, B. B.; Mishra, K. B.; Mishra, N.; Singh, A. S.; Chen, X. Chem. Rev. 2016, 116, 3086. (d) Huang, D.; Liu, Y.; Qin, A.-J.; Tang, B.-Z. Polym. Chem. 2018, 9, 2853.

    2. [2]

      Ding, C.-H.; Hou, X.-L. Chem. Rev. 2011, 111, 1914.  doi: 10.1021/cr100284m

    3. [3]

      (a) Nicholas, K. M.; Pettit, R. Tetrahedron Lett. 1971, 37, 3475. (b) Nicholas, K. M.; Pettit, R. J. Organomet. Chem. 1972, 44, 21.

    4. [4]

      Melikyan, G. G. Acc. Chem. Res. 2015, 48, 1065.  doi: 10.1021/ar500365v

    5. [5]

      Geri, R.; Oilizzi, C.; Lardicci, L.; Caporusso, A. M. Gazz. Chim. Ital. 1994, 124, 241.

    6. [6]

    7. [7]

      Bruneau, C.; Dixneuf, P. H. Metal Vinylidenes and Allenylidenes in Catalysis, Wiley-VCH, Weinheim, 2008.

    8. [8]

      (a) Kropf, H.; SchrÖder, R.; FÖlsing, R. Synthesis 1977, 894. (b) Alvarez, L. X.; Christ, M. L.; Sorokin, A. B. Appl. Catal. A: Gen. 2007, 325, 303.

    9. [9]

      Smith, S. W.; Fu, G. C. J. Am. Chem. Soc. 2008, 130, 12645.  doi: 10.1021/ja805165y

    10. [10]

      Oelke, A. J.; Sun, J.-W.; Fu, G. C. J. Am. Chem. Soc. 2012, 134, 2966.  doi: 10.1021/ja300031w

    11. [11]

      Pelphrey, P. M.; Popov, V. M.; Joska, T. M.; Beierlein, J. M.; Bolstad, E. S. D.; Fillingham, Y. A.; Wright, D. L.; Anderson, A. C. J. Med. Chem. 2007, 50, 940.  doi: 10.1021/jm061027h

    12. [12]

      Schley, N. D.; Fu, G. C. J. Am. Chem. Soc. 2014, 136, 16588.  doi: 10.1021/ja508718m

    13. [13]

      Domingo-Legarda, P.; Soler-Yanes, R.; Quirós-López, M. T.; Buñuel, E.; Cárdenas, D. J. Eur. J. Org. Chem. 2018, 35, 4900.

    14. [14]

      An, L.; Tong, F.-F.; Zhang, X.-G. Acta Chim. Sinica 2018, 76, 977(in Chinese).
       

    15. [15]

      Lu, F.-D.; Liu, D.; Zhu, L.; Lu, L.-Q.; Yang, Q.; Zhou, Q.-Q.; Wei, Y.; Lan, Y.; Xiao, W.-J. J. Am. Chem. Soc. 2019, 141, 6167.  doi: 10.1021/jacs.9b02338

    16. [16]

      Cheng, J.-K.; Loh, T.-P. J. Am. Chem. Soc. 2015, 137, 42.  doi: 10.1021/ja510635k

    17. [17]

      Andia, A. A.; Miner, M. R.; Woerpel, K. A. Org. Lett. 2015, 17, 2704.  doi: 10.1021/acs.orglett.5b01120

    18. [18]

      Miner, M. R.; Woerpel, K. A. Eur. J. Org. Chem. 2016, 1860.

    19. [19]

      Cheng, J.-K.; Shen, L.; Wu, L.-H.; Hu, X.-H.; Loh, T.-P. Chem. Commun. 2017, 53, 12830.  doi: 10.1039/C7CC08074C

    20. [20]

    21. [21]

      (a) Wartenberg, F.-H.; Junga, H.; Blechert, S. Tetrahedron Lett. 1993, 34, 5251. (b) Alameda-Angulo, C.; Quiclet-Sire, B.; Zard, S. Z. Tetrahedron Lett. 2006, 47, 913.

    22. [22]

      Soler-Yanes, R.; Arribas-Álvarez, I.; Guisán-Ceinos, M.; Buñuel, E.; Cárdenas, D. J. Chem. Eur. J. 2017, 23, 1584.  doi: 10.1002/chem.201603758

    23. [23]

      Wang, F.; Wang, D.-H.; Zhou, Y.; Liang, L.; Lu, R.-H.; Chen, P.-H.; Lin, Z.-Y.; Liu, G.-S. Angew. Chem., Int. Ed. 2018, 57, 7140.  doi: 10.1002/anie.201803668

    24. [24]

      Zhu, X.; Deng, W.; Chiou, M.-F.; Ye, C.; Jian, W.; Zeng, Y.; Jiao, Y.; Ge, L.; Li, Y.; Zhang, X.; Bao, H. J. Am. Chem. Soc. 2019, 141, 548.  doi: 10.1021/jacs.8b11499

    25. [25]

      Ye, C.-Q.; Li, Y.-J.; Zhu, X.-T.; Hu, S.-M.; Yuan, D.-Q.; Bao, H.-L. Chem. Sci. 2019, 10, 3632.  doi: 10.1039/C8SC05689G

    26. [26]

      Zhang, K.-F.; Bian, K.-J.; Li, C.; Sheng, J.; Li, Y.; Wang, X.-S. Angew. Chem. Int. Ed. 2019, 58, 5069.  doi: 10.1002/anie.201813184

    27. [27]

      Ye, C.-Q.; Qian, B.; Li, Y.-J.; Su, M.; Li, D.-L.; Bao, H.-L. Org. Lett. 2018, 20, 3202.  doi: 10.1021/acs.orglett.8b01043

    28. [28]

      Kang, Y.-W.; Choi, Y.-J.; Jang, H.-Y. Org. Lett. 2014, 16, 4842.  doi: 10.1021/ol502341f

    29. [29]

      Horn, E. J.; Rosen, B. R.; Chen, Y.; Tang, J.; Chen, K.; Eastgate, M. D.; Baran, P. S. Nature 2016, 533, 77.  doi: 10.1038/nature17431

  • 加载中
    1. [1]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    2. [2]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    3. [3]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    4. [4]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    5. [5]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    6. [6]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    7. [7]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    8. [8]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    9. [9]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    10. [10]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    11. [11]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    12. [12]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    13. [13]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    14. [14]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    15. [15]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    16. [16]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

    17. [17]

      Yuan GAOYiming LIUChunhui WANGZhe HANChaoyue FANJie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271

    18. [18]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    19. [19]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    20. [20]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

Metrics
  • PDF Downloads(86)
  • Abstract views(4050)
  • HTML views(1295)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return