Citation: Zheng Qiao-Feng, Ju Zhen, Liu Shu-Shen. Combined Toxicity of Dichlorvos and Its Metabolites to Vibrio qinghaiensis sp.-Q67 and Caenorhabditis elegans[J]. Acta Chimica Sinica, ;2019, 77(10): 1008-1016. doi: 10.6023/A19060197 shu

Combined Toxicity of Dichlorvos and Its Metabolites to Vibrio qinghaiensis sp.-Q67 and Caenorhabditis elegans

  • Corresponding author: Liu Shu-Shen, ssliuhl@263.net
  • Received Date: 3 June 2019
    Available Online: 13 October 2019

    Fund Project: the National Natural Science Foundation of China 21677113Project supported by the National Natural Science Foundation of China (Nos. 21437004, 21677113) and the Fundamental Research Funds for the Central Universities (No. 22120180246)the National Natural Science Foundation of China 21437004the Fundamental Research Funds for the Central Universities 22120180246

Figures(5)

  • Pesticides and their metabolites often coexist in the real environment. The combined toxicity (synergism or antagonism) between pesticide and metabolites directly affects the environment risk assessment of pesticide. Dichlorvos (A) has three main metabolites, 2, 2-dichloroethanol (B), 2, 2-dichloroacetic acid (C) and dimethyl phosphate (D), in water and soil environment. Under different environmental conditions, metabolites with various concentration compositions form a variety of mixtures with dichlorvos. In this paper, five mixture rays with different mixture ratios were selected by optimal experimental design method. A typical aquatic (Vibrio qinghaiensis sp. -Q67) and a soil organisms (Caenorhabditis elegans) were selected as the tested organisms. The photoluminescence inhibitory toxicity (IT) of parent A and its metabolites B, C and D as well as their mixtures to Q67 and the lethal toxicity (LT) to C. elegans at different exposure time and concentration levels were determined by microplate toxicity analysis. The combination index with 95% observation-based confidence intervals was used to evaluate the change of combined toxicity of each mixture ray under different exposure times and the concentration levels. The results showed that the ITs of parent A and two metabolites C and D to Q67 do not change with the exposure time, but the IT of metabolite B at 12 h is significantly larger than that at 0.25 h. However, at two exposure times, the IT of parent A is greater than that of any of metabolites. The LTs of A and B, C and D to C. elegans do not change with the exposure time. The LTs of A, C and D to C. elegans are basically the same and significantly greater than that of B. The ITs of five mixture rays to Q67 at 12 h are significantly greater than those at 0.25 h at various concentration levels. The combined toxicities of the mixture rays to Q67 are concentration additive at low concentration levels and antagonistic at high concentration levels whether at 0.25 h or 12 h. For C. elegans, the LTs of five mixture rays at various concentration levels do not basically change with the exposure time. At two exposure times (12 h and 24 h), the combined toxicities of mixture rays are concentration additive except for the slight antagonism in the rays of R2 and R5.
  • 加载中
    1. [1]

      Cruz-Alcalde, A.; Sans, C.; Esplugas, S. Sep. Purif. Technol. 2018, 192, 123.  doi: 10.1016/j.seppur.2017.09.069

    2. [2]

      Park, J. A.; Abd El-Aty, A. M.; Zheng, W.; Kim, S. K.; Cho, S. H.; Choi, J. M.; Hacimuftuo, A.; Jeong, J. H.; Wang, J.; Shim, J. H.; Shin, H. C. Food Chem. 2018, 252, 40.  doi: 10.1016/j.foodchem.2018.01.085

    3. [3]

      Yu, Y.; Hu, S.; Yang, Y.; Zhao, X.; Xue, J.; Zhang, J.; Gao, S.; Yang, A. BMC Public Health 2017, 18, 91.

    4. [4]

      Dirican, E. K.; Kalender, Y. Exp. Toxicol. Pathol. 2012, 64, 821.  doi: 10.1016/j.etp.2011.03.002

    5. [5]

      Oribhabor, B. J.; Ikeogu, G. C. Recent Pat. Biotechnol. 2016, 10, 272.  doi: 10.2174/1872208310666160725200722

    6. [6]

      Oncescu, T.; Oancea, P.; Enache, M.; Popescu, G.; Dumitru, L.; Kamekura, M. Cent. Eur. J. Biol. 2007, 2, 563.  doi: 10.2478/s11535-007-0037-7

    7. [7]

      Barrett, K.; Jaward, F. M. Int. J. Environ. Health Res. 2012, 22, 481.  doi: 10.1080/09603123.2012.667794

    8. [8]

      Boxall, A. B. A.; Sinclair, C. J.; Fenner, K.; Kolpin, D.; Maud, S. J. Environ. Sci. Technol. 2004, 38, 368A.  doi: 10.1021/es040624v

    9. [9]

      Benfeito, S.; Silva, T.; Garrido, J.; Andrade, P. B.; Sottomayor, M. J.; Borges, F.; Garrido, E. M. Biomed. Res. Int. 2014, no. 709036 (DOI: 10.1155/2014/709036).  doi: 10.1155/2014/709036)

    10. [10]

      Zhang, Q.; Ji, C.; Yan, L.; Lu, M.; Lu, C.; Zhao, M. Environ. Pollut. 2016, 218, 8.  doi: 10.1016/j.envpol.2016.08.026

    11. [11]

      Stancova, V.; Plhalova, L.; Bartoskova, M.; Zivna, D.; Prokes, M.; Marsalek, P.; Blahova, J.; Skoric, M.; Svobodova, Z. Biomed. Res. Int. 2014, no. 253468 (DOI: 10.1155/2014/253468).  doi: 10.1155/2014/253468)

    12. [12]

      Gatidou, G.; Thomaidis, N. S. Aquat. Toxicol. 2007, 85, 184.  doi: 10.1016/j.aquatox.2007.09.002

    13. [13]

      Liu, S. S.; Xiao, Q. F.; Zhang, J.; Yu, M. Sci. Bull. 2016, 61, 52.  doi: 10.1007/s11434-015-0925-6

    14. [14]

      Moser, V. C.; Simmons, J. E.; Gennings, C. Toxicol. Sci. 2006, 92, 235.  doi: 10.1093/toxsci/kfj189

    15. [15]

      Stork, L. G.; Gennings, C.; Carter, W. H., Jr.; Johnson, R. E.; Mays, D. P.; Simmons, J. E.; Wagner, E. D.; Plewa, M. J. J. Agric. Biol. Environ. Stat. 2007, 12, 514.  doi: 10.1198/108571107X249816

    16. [16]

      Fang, K. T.; Lin, D. K. J.; Winker, P.; Zhang, Y. Technometrics 2000, 42, 237.  doi: 10.1080/00401706.2000.10486045

    17. [17]

      Chou, T. C. Pharmacol. Rev. 2006, 58, 621.  doi: 10.1124/pr.58.3.10

    18. [18]

      Li, K.; Liu, S. S.; Qu, R. Asian J. Ecotoxicol. 2017, 12, 62 (in Chinese).  doi: 10.7524/AJE.1673-5897.20160712001

    19. [19]

      Feng, L.; Liu, S. S.; Li, K.; Tang, H. X.; Liu, H. L. J. Hazard. Mater. 2017, 327, 11.  doi: 10.1016/j.jhazmat.2016.12.031

    20. [20]

      Tang, H. X.; Liu, S. S.; Li, K.; Feng, L. Anal. Methods 2016, 8, 4466.  doi: 10.1039/C6AY00582A

    21. [21]

      Liu, L.; Liu, S. S.; Yu, M.; Chen, F. Environ. Toxicol. Pharmacol. 2015, 39, 447.  doi: 10.1016/j.etap.2014.12.013

    22. [22]

      Chen, Y. H.; Qin, L. T.; Mo, L. Y.; Zhao, D. N.; Zeng, H. H.; Liang, Y. P. Environ. Pollut. 2019, 250, 375.  doi: 10.1016/j.envpol.2019.04.009

    23. [23]

      Girotti, S.; Ferri, E. N.; Fumo, M. G.; Maiolini, E. Anal. Chim. Acta 2008, 608, 2.  doi: 10.1016/j.aca.2007.12.008

    24. [24]

      Wu, S.; Zhang, X.; Yang, P.; Li, L.; Tang, S. Int. J. Food Sci. Technol. 2018, 53, 2141.  doi: 10.1111/ijfs.13801

    25. [25]

      Jian, Q.; Gong, L.; Li, T.; Wang, Y.; Wu, Y.; Chen, F.; Qu, H.; Duan, X.; Jiang, Y. Toxins (Basel) 2017, 9, 335.  doi: 10.3390/toxins9100335

    26. [26]

      Thomulka, K. W.; McGee, D. J.; Lange, J. H. Bull. Environ. Contam. Toxicol. 1993, 51, 538.  doi: 10.1007/BF00192169

    27. [27]

      Gong, L.; Wu, Y.; Jian, Q.; Yin, C.; Li, T.; Gupta, V. K.; Duan, X.; Jiang, Y. Sci. Data 2018, 5, 170105.

    28. [28]

      Ding, K.; Lu, L.; Wang, J.; Wang, J.; Zhou, M.; Zheng, C.; Liu, J.; Zhang, C.; Zhuang, S. Sci. Total Environ. 2017, 580, 1078.  doi: 10.1016/j.scitotenv.2016.12.062

    29. [29]

      Fan, Y.; Liu, S. S.; Qu, R.; Li, K.; Liu, H. L. RSC Adv. 2017, 7, 6080.  doi: 10.1039/C6RA25843C

    30. [30]

      Zhang, J.; Ding, T. T.; Dong, X. Q.; Bian, Z. Q. RSC Adv. 2018, 8, 26089.  doi: 10.1039/C8RA04191A

    31. [31]

      Mo, L. Y.; Liu, J.; Qin, L. T.; Zeng, H. H.; Liang, Y. P. Bull. Environ. Contam. Toxicol. 2017, 99, 17.  doi: 10.1007/s00128-017-2099-1

    32. [32]

      Xu, Y. Q.; Liu, S. S.; Wang, Z. J.; Li, K.; Qu, R. Ecotoxicol. Environ. Saf. 2018, 162, 304.  doi: 10.1016/j.ecoenv.2018.07.007

    33. [33]

      Zhou, D.; Yang, J.; Li, H.; Cui, C.; Yu, Y.; Liu, Y.; Lin, K. Chemosphere 2016, 154, 546.  doi: 10.1016/j.chemosphere.2016.04.011

    34. [34]

      Jager, T.; Gudmundsdottir, E. M.; Cedergreen, N. Environ. Sci. Technol. 2014, 48, 7026.  doi: 10.1021/es501306t

    35. [35]

      Cole, R. D.; Anderson, G. L.; Williams, P. L. Toxicol. Appl. Pharmacol. 2004, 194, 248.  doi: 10.1016/j.taap.2003.09.013

    36. [36]

      Yu, Z.; Yin, D.; Deng, H. Ecotoxicol. Environ. Saf. 2015, 111, 66.  doi: 10.1016/j.ecoenv.2014.09.026

    37. [37]

      Sochova, I.; Hofman, J.; Holoubek, I. Environ. Int. 2007, 33, 798.  doi: 10.1016/j.envint.2007.03.001

    38. [38]

      Varo, I.; Perini, A.; Torreblanca, A.; Garcia, Y.; Bergami, E.; Vannuccini, M. L.; Corsi, I. Sci. Total Environ. 2019, 675, 570.  doi: 10.1016/j.scitotenv.2019.04.157

    39. [39]

      Li, T.; Liu, S. S.; Qu, R.; Liu, H. L. Ecotoxicol. Environ. Saf. 2017, 144, 475.  doi: 10.1016/j.ecoenv.2017.06.044

    40. [40]

      Yu, Z. Y.; Mo, L. Y.; Zhang, J.; Liu, S. S. Chemosphere 2016, 163, 452.  doi: 10.1016/j.chemosphere.2016.08.061

    41. [41]

      Li, K.; Xu, Y. Q.; Feng, L.; Liu, S. S. Environ. Pollut. 2018, 242, 872.  doi: 10.1016/j.envpol.2018.06.107

    42. [42]

      Zhang, J.; Wang, J. C.; Liu, S. S.; Ge, H. L.; Liu, H. L. Asian J. Ecotoxicol. 2009, 4, 353 (in Chinese).
       

    43. [43]

      Zhang, J.; Liu, S. S. Asian J. Ecotoxicol. 2012, 7, 408 (in Chinese).
       

    44. [44]

      Zhang, J.; Liu, S. S.; Zhu, X. W. Chemosphere 2014, 112, 420.  doi: 10.1016/j.chemosphere.2014.05.007

    45. [45]

      Evgenidou, E.; Konstantinou, I.; Fytianos, K.; Albanis, T. J. Hazard. Mater. 2006, 137, 1056.  doi: 10.1016/j.jhazmat.2006.03.042

    46. [46]

      Xu, Y. Q.; Liu, S. S.; Fan, Y.; Li, K. Sci. Total Environ. 2018, 635, 432.  doi: 10.1016/j.scitotenv.2018.04.023

    47. [47]

      Zhang, J.; Liu, S. S.; Yu, Z. Y.; Zhang, J. Chemosphere 2013, 91, 462.  doi: 10.1016/j.chemosphere.2012.11.070

    48. [48]

      Zhu, X. W.; Liu, S. S.; Ge, H. L.; Liu, Y. Water Res. 2009, 43, 1731.  doi: 10.1016/j.watres.2009.01.004

    49. [49]

      Wang, M. C.; Liu, S. S.; Chen, F. Acta Chim. Sinica 2014, 72, 56 (in Chinese).
       

    50. [50]

      Zhu, X. W.; Liu, S. S.; Ge, H. L.; Liu, Y. China Environ. Sci. 2009, 29, 113 (in Chinese).  doi: 10.3321/j.issn:1000-6923.2009.02.001

    51. [51]

      Zhu, X. W.; Liu, S. S.; Qin, L. T.; Chen, F.; Liu, H. L. Ecotoxicol. Environ. Saf. 2013, 89, 130.  doi: 10.1016/j.ecoenv.2012.11.022

    52. [52]

      Liu, S. S.; Zhang, J.; Zhang, Y. H.; Qin, L. T. Acta Chim. Sinica 2012, 70, 1511 (in Chinese).  doi: 10.3969/j.issn.0251-0790.2012.07.027
       

    53. [53]

      Zhang, Y. H.; Liu, S. S.; Liu, H. L.; Liu, Z. Z. Pest Manag. Sci. 2010, 66, 879.  doi: 10.1002/ps.1957

  • 加载中
    1. [1]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    2. [2]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    3. [3]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    4. [4]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    5. [5]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    6. [6]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    7. [7]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    8. [8]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    9. [9]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    10. [10]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    11. [11]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    12. [12]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    13. [13]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    14. [14]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    15. [15]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

Metrics
  • PDF Downloads(7)
  • Abstract views(1373)
  • HTML views(162)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return