Citation: Qian Xiangyang, Xiong Peng, Xu Hai-Chao. Modular Synthesis of Functionalized 4-Quinolones via a Radical Cyclization Cascade Reaction[J]. Acta Chimica Sinica, ;2019, 77(9): 879-883. doi: 10.6023/A19050193 shu

Modular Synthesis of Functionalized 4-Quinolones via a Radical Cyclization Cascade Reaction

  • Corresponding author: Xu Hai-Chao, haichao.xu@xmu.edu.cn
  • Received Date: 25 May 2019
    Available Online: 1 September 2019

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21672178) and Fundamental Research Funds for the Central Universitiesthe National Natural Science Foundation of China 21672178

Figures(4)

  • 4-Quinolones are structural motifs prevalent in natural products and biologically active compounds. However, it remains challenging to synthesize 4-quinolones that bears diverse substituents at 2-and 3-positions. Herein we report an efficient and modular method for the synthesis of 4-quinolones from easily available N-aryl-O-propargyl carbamates and CO. The reactions employ 2-iodoxybenzoic acid (IBX) as an oxidant to oxidize the N-H group of the carbamate to generate an amide radical, which undergoes radical cyclization cascade with CO to afford the 4-quinolone product. The reactions provide speedy access to a series of 2, 3-disubstituted 4-quinolones by varying the substituents of the carbamate substrate. Late stage functionalization employing Ni-catalysis allows the conversion of an OMe group on the 4-quinonone benzene ring to alkyl substituents, further increasing the diversity of the 4-quinone product. The synthetic potential is further demonstrated by running the synthesis on gram scale and by preparation of an enantiomerically enriched 4-quinolone product. The typical procedure is detailed as follows:A magnetic stirring bar, the carbamate substrate (0.25 mmol), IBX (1.0 mmol), and anhydrous dimethyl sulfoxide (DMSO, 10 mL) were placed in a 50 mL stainless steel autoclave. The autoclave was sealed, vacuumed and purged five times with CO, and finally pressurized with 10 MPa of CO. The reaction vessel was heated at 90℃ for 12 h and then cooled to r.t.. Excess CO was released in a fume hood. The reaction mixture was diluted with ethyl acetate (20 mL) and 5% NaHCO3 (15 mL). The phases were separated. The aqueous phase was extracted with ethyl acetate (20 mL×2). The combined organic solution was washed with 5% NaHCO3 (20 mL) and brine (20 mL). The organic solution was dried over anhydrous MgSO4, filtered and concentrated under reduced pressure. The residue was chromatographed through silica gel eluting with ethyl acetate/hexanes to give the desired product.
  • 加载中
    1. [1]

      (a) Mitscher, L. A. Chem. Rev. 2005, 105, 559; (b) Zhanel, G. G.; Ennis K.; Vercaigne, L.; Walkty, A.; Gin, A. S.; Embil, J.; Smith, H.; Hoban1, D. J. Drugs 2002, 62, 13.

    2. [2]

      (a) Nilsen, A.; Miley, G. P.; Forquer, I. P.; Mather, M. W.; Katneni, K.; Li, Y.; Pou, S.; Pershing, A. M.; Stickles, A. M.; Ryan, E.; Kelly, J. X.; Doggett, J. S.; White, K. L.; Hinrichs, D. J.; Winter, R. W.; Charman, S. A.; Zakharov, L. N.; Bathurst, I.; Burrows, J. N.; Vaidya, A. B.; Riscoe, M. K. J. Med. Chem. 2014, 57, 3818; (b) Nilsen, A.; LaCrue, A. N.; White, K. L.; Forquer, I. P.; Cross, R. M.; Marfurt, J.; Mather, M. W.; Delves, M. J.; Shackleford, D. M.; Saenz, F. E.; Morrisey, J. M.; Steuten, J.; Mutka, T.; Li, Y.; Wirjanata, G.; Ryan, E.; Duffy, S.; Kelly, J. X.; Sebayang, B. F.; Zeeman, A.-M.; Noviyanti, R.; Sinden, R. E.; Kocken, C. H. M.; Price, R. N.; Avery, V. M.; Angulo-Barturen, I.; Jiménez-Díaz, M. B.; Ferrer, S.; Herreros, E.; Sanz, L. M.; Gamo, F.-J.; Bathurst, I.; Burrows, J. N.; Siegl, P.; Guy, R. K.; Winter, R. W.; Vaidya, A. B.; Charman, S. A.; Kyle, D. E.; Manetsch, R.; Riscoe, M. K. Sci. Transl. Med. 2013, 5, 177ra137.

    3. [3]

      Wang, Z. (2010). Conrad-Limpach Quinoline Synthesis. In Comprehensive Organic Name Reactions and Reagents, Z. Wang (Ed.). doi: 10.1002/9780470638859.conrr152.

    4. [4]

      Gould, R. G.; Jacobs, W. A. J. Am. Chem. Soc. 1939, 61, 2890.  doi: 10.1021/ja01265a088

    5. [5]

      (a) Mukhina, O. A.; Kutateladze, A. G. J. Am. Chem. Soc. 2016, 138, 2110; (b) Kwon, S.; Kang, D.; Hong, S. Eur. J. Org. Chem. 2015, 2015, 3671; (c) Shao, T.; Jiang, Z. Acta Chim. Sinica 2017, 75, 70. (d) Qiang Xie, Q.; Chen, X.-J.; Huang, P.-Q. Acta Chim. Sinica 2015, 73, 705.

    6. [6]

      (a) Malacria, M. Chem. Rev. 1996, 96, 289; (b) Curran, D. P. Aldrichimica Acta 2000, 33, 104.

    7. [7]

      Fuentes, N.; Kong, W. Q.; Fernandez-Sanchez, L.; Merino, E.; Nevado, C. J. Am. Chem. Soc. 2015, 137, 964.  doi: 10.1021/ja5115858

    8. [8]

      (a) Hou, Z. W.; Mao, Z. Y.; Zhao, H. B.; Melcamu, Y. Y.; Lu, X.; Song, J.; Xu, H.-C. Angew. Chem., Int. Ed. 2016, 55, 9168; (b) Zhu, L.; Xiong, P.; Mao, Z. Y.; Wang, Y. H.; Yan, X.; Lu, X.; Xu, H.-C. Angew. Chem., Int. Ed. 2016, 55, 2226; (c) Hou, Z.-W.; Mao, Z.-Y.; Song, J.; Xu, H.-C. ACS Catal. 2017, 5810; (d) Hou, Z.-W.; Yan, H.; Song, J.-S.; Xu, H.-C. Chin. J. Chem. 2018, 36, 909; (e) Hou, Z.-W.; Mao, Z.-Y.; Melcamu, Y. Y.; Lu, X.; Xu, H.-C. Angew. Chem., Int. Ed. 2018, 57, 1636; (f) Xu, F.; Long, H.; Song, J.; Xu, H.-C. Angew. Chem., Int. Ed. 2019, 58, 9017; (g) Long, H.; Song, J. S.; Xu, H. C. Org. Chem. Front. 2018, 5, 3129; (h) Xiong, P.; Xu, H.-H.; Xu, H.-C. J. Am. Chem. Soc. 2017, 139, 2956.

    9. [9]

      Nicolaou, K. C.; Baran, P. S.; Zhong, Y. L.; Barluenga, S.; Hunt, K. W.; Kranich, R.; Vega, J. A. J. Am. Chem. Soc. 2002, 124, 2233.  doi: 10.1021/ja012126h

    10. [10]

      Matsumura, K.; Hashiguchi, S.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1997, 119, 8738.  doi: 10.1021/ja971570a

    11. [11]

      (a) Tobisu, M.; Chatani, N. Acc. Chem. Res. 2015, 48, 1717; (b) Guan, B.-T.; Xiang, S.-K.; Wu, T.; Sun, Z.-P.; Wang, B.-Q.; Zhao, K.-Q.; Shi, Z.-J. Chem. Commun. 2008, 1437; (c) Leiendecker, M.; Hsiao, C.-C.; Guo, L.; Alandini, N.; Rueping, M. Angew. Chem., Int. Ed. 2014, 53, 12912; (d) Tobisu, M.; Takahira, T.; Chatani, N. Org. Lett. 2015, 17, 4352.

    12. [12]

      (a) Matsubara, H.; Ryu, I.; Schiesser, C. H. J. Org. Chem. 2005, 70, 3610; (b) Uenoyama, Y.; Fukuyama, T.; Nobuta, O.; Matsubara, H.; Ryu, I. Angew. Chem., Int. Ed. 2005, 44, 1075; (c) Fukuyama, T.; Nakashima, N.; Okada, T.; Ryu, I. J. Am. Chem. Soc. 2013, 135, 1006.

  • 加载中
    1. [1]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    2. [2]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    3. [3]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    4. [4]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    5. [5]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    6. [6]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    7. [7]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

    8. [8]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    9. [9]

      Xinghai Liu Hongke Wu . Exploration and Practice of Ideological and Political Education in Heterocyclic Chemistry Based on "Fentanyl" Event. University Chemistry, 2024, 39(8): 359-364. doi: 10.3866/PKU.DXHX202312100

    10. [10]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    11. [11]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    12. [12]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    13. [13]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    14. [14]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    15. [15]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    16. [16]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    17. [17]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    18. [18]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    19. [19]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    20. [20]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

Metrics
  • PDF Downloads(14)
  • Abstract views(1466)
  • HTML views(382)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return